1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
use std::convert::{From, TryInto};
use std::ops;
use ultraviolet::{Vec2, Vec2i};

pub type PointF = Vec2;

#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
/// Helper struct defining a 2D point in space.
pub struct Point {
    pub x: i32,
    pub y: i32,
}

#[cfg(feature = "specs")]
impl specs::prelude::Component for Point {
    type Storage = specs::prelude::VecStorage<Self>;
}

impl Point {
    /// Create a new point from an x/y coordinate.
    #[inline]
    #[must_use]
    pub fn new<T>(x: T, y: T) -> Point
    where
        T: TryInto<i32>,
    {
        Point {
            x: x.try_into().ok().unwrap_or(0),
            y: y.try_into().ok().unwrap_or(0),
        }
    }

    /// Create a new point from i32, this can be constant
    pub const fn constant(x: i32, y: i32) -> Self {
        Point { x, y }
    }

    // Create a zero point
    #[inline]
    pub fn zero() -> Self {
        Point { x: 0, y: 0 }
    }

    #[inline]
    // Create a point from a tuple of two i32s
    pub fn from_tuple<T>(t: (T, T)) -> Self
    where
        T: TryInto<i32>,
    {
        Point::new(t.0, t.1)
    }

    #[inline]
    /// Helper for map index conversion
    pub fn to_index<T>(self, width: T) -> usize
    where
        T: TryInto<usize>,
    {
        let x: usize = self.x.try_into().ok().unwrap();
        let y: usize = self.y.try_into().ok().unwrap();
        let w: usize = width.try_into().ok().unwrap();
        (y * w) + x
    }

    /// Converts the point to an i32 tuple
    pub fn to_tuple(self) -> (i32, i32) {
        (self.x, self.y)
    }

    /// Converts the point to a usize tuple
    pub fn to_unsigned_tuple(self) -> (usize, usize) {
        (
            self.x.try_into().ok().unwrap(),
            self.y.try_into().ok().unwrap(),
        )
    }

    /// Converts the point to an UltraViolet vec2
    pub fn to_vec2(self) -> Vec2 {
        Vec2::new(self.x as f32, self.y as f32)
    }

    /// Converts the point to an UltraViolet vec2i
    pub fn to_vec2i(self) -> Vec2i {
        Vec2i::new(self.x, self.y)
    }

    /// Creates a point from an UltraViolet vec2
    pub fn from_vec2(v: Vec2) -> Self {
        Self::new(v.x as i32, v.y as i32)
    }

    /// Creates a point from an UltraViolet vec2i
    pub fn from_vec2i(v: Vec2i) -> Self {
        Self::new(v.x, v.y)
    }
}

impl From<(i32, i32)> for Point {
    fn from(item: (i32, i32)) -> Self {
        Self {
            x: item.0,
            y: item.1,
        }
    }
}

impl From<(f32, f32)> for Point {
    fn from(item: (f32, f32)) -> Self {
        Self {
            x: item.0 as i32,
            y: item.1 as i32,
        }
    }
}

impl From<Vec2> for Point {
    fn from(item: Vec2) -> Self {
        Self {
            x: item.x as i32,
            y: item.y as i32,
        }
    }
}

impl From<Vec2i> for Point {
    fn from(item: Vec2i) -> Self {
        Self {
            x: item.x,
            y: item.y,
        }
    }
}

///////////////////////////////////////////////////////////////////////////////////////
/// Overloads: We support basic point math

/// Support adding a point to a point
impl ops::Add<Point> for Point {
    type Output = Point;
    fn add(mut self, rhs: Point) -> Point {
        self.x += rhs.x;
        self.y += rhs.y;
        self
    }
}

/// Support adding an int to a point
impl ops::Add<i32> for Point {
    type Output = Point;
    fn add(mut self, rhs: i32) -> Point {
        self.x += rhs;
        self.y += rhs;
        self
    }
}

/// Support subtracting a point from a point
impl ops::Sub<Point> for Point {
    type Output = Point;
    fn sub(mut self, rhs: Point) -> Point {
        self.x -= rhs.x;
        self.y -= rhs.y;
        self
    }
}

/// Support subtracting an int from a point
impl ops::Sub<i32> for Point {
    type Output = Point;
    fn sub(mut self, rhs: i32) -> Point {
        self.x -= rhs;
        self.y -= rhs;
        self
    }
}

/// Support multiplying a point by a point
impl ops::Mul<Point> for Point {
    type Output = Point;
    fn mul(mut self, rhs: Point) -> Point {
        self.x *= rhs.x;
        self.y *= rhs.y;
        self
    }
}

/// Support multiplying a point by an int
impl ops::Mul<i32> for Point {
    type Output = Point;
    fn mul(mut self, rhs: i32) -> Point {
        self.x *= rhs;
        self.y *= rhs;
        self
    }
}

/// Support multiplying a point by an f32
impl ops::Mul<f32> for Point {
    type Output = Point;
    fn mul(mut self, rhs: f32) -> Point {
        self.x = (self.x as f32 * rhs) as i32;
        self.y = (self.y as f32 * rhs) as i32;
        self
    }
}

/// Support dividing a point by a point
impl ops::Div<Point> for Point {
    type Output = Point;
    fn div(mut self, rhs: Point) -> Point {
        self.x /= rhs.x;
        self.y /= rhs.y;
        self
    }
}

/// Support dividing a point by an int
impl ops::Div<i32> for Point {
    type Output = Point;
    fn div(mut self, rhs: i32) -> Point {
        self.x /= rhs;
        self.y /= rhs;
        self
    }
}

/// Support dividing a point by an f32
impl ops::Div<f32> for Point {
    type Output = Point;
    fn div(mut self, rhs: f32) -> Point {
        self.x = (self.x as f32 / rhs) as i32;
        self.y = (self.y as f32 / rhs) as i32;
        self
    }
}

// Unit tests
#[cfg(test)]
mod tests {
    use super::Point;

    #[test]
    fn new_point() {
        let pt = Point::new(1, 2);
        assert_eq!(pt.x, 1);
        assert_eq!(pt.y, 2);
    }

    #[test]
    fn add_point_to_point() {
        let pt = Point::new(0, 0);
        let p2 = pt + Point::new(1, 2);
        assert_eq!(p2.x, 1);
        assert_eq!(p2.y, 2);
    }

    #[test]
    fn add_point_to_int() {
        let pt = Point::new(0, 0);
        let p2 = pt + 2;
        assert_eq!(p2.x, 2);
        assert_eq!(p2.y, 2);
    }

    #[test]
    fn sub_point_to_point() {
        let pt = Point::new(0, 0);
        let p2 = pt - Point::new(1, 2);
        assert_eq!(p2.x, -1);
        assert_eq!(p2.y, -2);
    }

    #[test]
    fn sub_point_to_int() {
        let pt = Point::new(0, 0);
        let p2 = pt - 2;
        assert_eq!(p2.x, -2);
        assert_eq!(p2.y, -2);
    }

    #[test]
    fn mul_point_to_point() {
        let pt = Point::new(1, 1);
        let p2 = pt * Point::new(1, 2);
        assert_eq!(p2.x, 1);
        assert_eq!(p2.y, 2);
    }

    #[test]
    fn mul_point_to_int() {
        let pt = Point::new(1, 1);
        let p2 = pt * 2;
        assert_eq!(p2.x, 2);
        assert_eq!(p2.y, 2);
    }

    #[test]
    fn mul_point_to_float() {
        let pt = Point::new(1, 1);
        let p2 = pt * 4.0;
        assert_eq!(p2.x, 4);
        assert_eq!(p2.y, 4);
    }

    #[test]
    fn div_point_to_point() {
        let pt = Point::new(4, 4);
        let p2 = pt / Point::new(2, 4);
        assert_eq!(p2.x, 2);
        assert_eq!(p2.y, 1);
    }

    #[test]
    fn div_point_to_int() {
        let pt = Point::new(4, 4);
        let p2 = pt / 2;
        assert_eq!(p2.x, 2);
        assert_eq!(p2.y, 2);
    }

    #[test]
    fn div_point_to_float() {
        let pt = Point::new(4, 4);
        let p2 = pt / 2.0;
        assert_eq!(p2.x, 2);
        assert_eq!(p2.y, 2);
    }
}