1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
use std::{collections::HashMap, fs, iter};
use unicode_segmentation::UnicodeSegmentation;
use crate::{
constants::*,
default_vocabs::{new_default, DefaultVocab},
BytePairEncoderError,
};
/// # Represents a Byte Pair Encoding (BPE) vocabulary used for tokenization.
///
/// This struct holds the mapping of tokens to their respective scores and provides methods for
/// tokenizing text using the BPE algorithm.
///
/// The vocabulary is typically loaded from a file or string where each line
/// contains a token and its score, separated by a tab character.
///
/// ## Example
///
/// ```
/// use bpe_tokenizer::BytePairEncoder;
///
/// let vocab = BytePairEncoder::new_from_str("hello\t1\nworld\t2").unwrap();
/// let tokenized = vocab.tokenize("Hello, world!");
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct BytePairEncoder {
/// # A mapping of tokens to their respective scores.
///
/// In BPE, tokens with higher scores are typically more common and are preferred during the
/// tokenization process.
pub(crate) tokens: HashMap<String, isize>,
}
impl BytePairEncoder {
/// # Creates a new `BytePairEncoder` from a file containing token-score pairs.
///
/// This function reads the contents of the file specified by `file_path` and constructs
/// a `BytePairEncoder` from it. The file should contain token-score pairs, with each pair
/// on a separate line and the token and score separated by a tab character (`\t`).
///
/// ## Input Format
///
/// The file is expected to follow this format:
///
/// ```text
/// <token>\t<score>\n
/// ```
///
/// Each line should consist of:
/// * A token (a string) followed by a tab character (`\t`)
/// * A score (an integer) as either a positive or negative value.
///
/// Example lines from the file:
///
/// ```text
/// <unk> 0
/// ▁t -0
/// ▁the -4
/// ```
///
/// ## Arguments
///
/// * `file_path` - A string slice that holds the path to the file containing token-score pairs.
///
/// ## Returns
///
/// * `Result<Self, BytePairEncoderError>` - A Result containing the created `BytePairEncoder` if successful,
/// or a `BytePairEncoderError` if there was an error reading the file or parsing its contents.
///
/// ## Errors
///
/// This function will return an error if:
/// * The file cannot be read (returns `BytePairEncoderError::InvalidFile`)
/// * The file contents are not in the expected format (returns `BytePairEncoderError::InvalidVocabularyInput`)
///
/// ## Example
///
/// ```
/// use bpe_tokenizer::BytePairEncoder;
///
/// let vocab = BytePairEncoder::new_from_file("path/to/vocabulary/file.txt");
/// ```
pub fn new_from_file(file_path: &str) -> Result<Self, BytePairEncoderError> {
Self::new_from_str(
fs::read_to_string(file_path)
.map_err(|_| BytePairEncoderError::InvalidFile(file_path.to_string()))?
.as_ref(),
)
}
/// # Creates a new `BytePairEncoder` from a string containing token-score pairs.
///
/// This function parses the input string to construct a `BytePairEncoder`. The input should
/// contain token-score pairs, with each pair on a separate line and the token and score
/// separated by a tab character (`\t`).
///
/// ## Input Format
///
/// The string must follow this format:
///
/// ```text
/// <token>\t<score>\n
/// ```
///
/// Each line in the string should consist of:
/// * A token (a string) followed by a tab character (`\t`)
/// * A score (an integer) as either a positive or negative value.
///
/// For example:
///
/// ```text
/// hello 1
/// world 2
/// ▁the -4
/// ```
///
/// ## Arguments
///
/// * `input` - A string slice that holds the token-score pairs.
///
/// ## Returns
///
/// * `Result<Self, BytePairEncoderError>` - A Result containing the created `BytePairEncoder` if successful,
/// or a `BytePairEncoderError` if there was an error parsing the input.
///
/// ## Errors
///
/// This function will return `BytePairEncoderError::InvalidVocabularyInput` if:
/// * A line doesn't contain a tab character to separate token and score.
/// * The score cannot be parsed as an `isize`.
///
/// ## Example
///
/// ```
/// use bpe_tokenizer::BytePairEncoder;
///
/// let input = "hello\t1\nworld\t2";
/// let vocab = BytePairEncoder::new_from_str(input).unwrap();
/// ```
pub fn new_from_str(input: &str) -> Result<Self, BytePairEncoderError> {
let mut tokens = HashMap::new();
for line in input.lines() {
let (token, score_str) = match line.split_once('\t') {
Some(pair) => pair,
None => return Err(BytePairEncoderError::InvalidVocabularyInput),
};
let score = match score_str.parse::<isize>() {
Ok(score) => score,
Err(_) => return Err(BytePairEncoderError::InvalidVocabularyInput),
};
tokens.insert(token.to_string(), score);
}
Ok(BytePairEncoder { tokens })
}
/// # Creates a new `BytePairEncoder` with a default small vocabulary size (100,000 tokens).
///
/// This function constructs a `BytePairEncoder` using a pre-trained multilingual vocabulary
/// that supports 275 languages. The vocabulary is sourced from the
/// [BPEmb](https://github.com/bheinzerling/bpemb) project, licensed under MIT. The small-sized
/// vocabulary file consists of 100,000 tokens, allowing for highly compressed tokenization
/// suitable for tasks with limited memory constraints.
///
/// ## Returns
///
/// A `Result<Self, BytePairEncoderError>`, constructing the `BytePairEncoder` on successful
/// vocabulary loading, or a corresponding error if initialization fails.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "default-small")] {
/// use bpe_tokenizer::BytePairEncoder;
///
/// let encoder = BytePairEncoder::new_default_small().unwrap();
/// # }
/// ```
///
/// ## Note
///
/// This is only enabled when the `default-small` feature is enabled in Cargo.toml.
///
/// ```toml
/// [dependencies]
/// bpe-tokenizer = { version = "<version", features = ["default-small"] }
/// ```
pub fn new_default_small() -> Result<Self, BytePairEncoderError> {
new_default(DefaultVocab::Small)
}
/// # Creates a new `BytePairEncoder` with a default medium vocabulary size (320,000 tokens).
///
/// This function constructs a `BytePairEncoder` using a pre-trained multilingual vocabulary
/// that supports 275 languages. The vocabulary is sourced from the
/// [BPEmb](https://github.com/bheinzerling/bpemb) project, licensed under MIT. The
/// medium-sized vocabulary file consists of 320,000 tokens, offering a balance between token
/// coverage and memory efficiency, making it suitable for a wide variety of NLP tasks.
///
/// ## Returns
///
/// A `Result<Self, BytePairEncoderError>`, constructing the `BytePairEncoder` on successful
/// vocabulary loading, or a corresponding error if initialization fails.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "default-medium")] {
/// use bpe_tokenizer::BytePairEncoder;
///
/// let encoder = BytePairEncoder::new_default_medium().unwrap();
/// # }
/// ```
///
/// ## Note
///
/// This is only enabled when the `default-medium` feature is enabled in Cargo.toml.
///
/// ```toml
/// [dependencies]
/// bpe-tokenizer = { version = "<version", features = ["default-medium"] }
/// ```
pub fn new_default_medium() -> Result<Self, BytePairEncoderError> {
new_default(DefaultVocab::Medium)
}
/// # Creates a new `BytePairEncoder` with a default large vocabulary size (1,000,000 tokens).
///
/// This function constructs a `BytePairEncoder` using a pre-trained multilingual vocabulary
/// that supports 275 languages. The vocabulary is sourced from the
/// [BPEmb](https://github.com/bheinzerling/bpemb) project, licensed under MIT. The large-sized
/// vocabulary consists of 1,000,000 tokens, providing maximum coverage for detailed language
/// representation, especially useful in applications requiring high granularity.
///
/// ## Returns
///
/// A `Result<Self, BytePairEncoderError>`, constructing the `BytePairEncoder` on successful
/// vocabulary loading, or a corresponding error if initialization fails.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "default-large")] {
/// use bpe_tokenizer::BytePairEncoder;
///
/// let encoder = BytePairEncoder::new_default_large().unwrap();
/// # }
/// ```
///
/// ## Note
///
/// This is only enabled when the `default-large` feature is enabled in Cargo.toml.
///
/// ```toml
/// [dependencies]
/// bpe-tokenizer = { version = "<version", features = ["default-large"] }
/// ```
pub fn new_default_large() -> Result<Self, BytePairEncoderError> {
new_default(DefaultVocab::Large)
}
/// # Tokenizes a text into sentences, then words, and finally into BPE tokens.
///
/// This function takes a string of text and returns an iterator that yields
/// vectors of tokens, where each vector represents a tokenized sentence.
///
/// ## Arguments
///
/// * `text` - A string slice containing the text to be tokenized.
///
/// ## Returns
///
/// An iterator that yields `Vec<String>`, where each `Vec<String>` represents
/// a tokenized sentence.
///
/// ## Example
///
/// ```
/// use bpe_tokenizer::BytePairEncoder;
///
/// let vocab = BytePairEncoder::new_from_str("hello\t1\nworld\t2").unwrap();
/// let text = "Hello, world! How are you?";
/// let tokenized: Vec<Vec<String>> = vocab
/// .tokenize_sentences_iter(text)
/// .map(|sentence_iter| sentence_iter.collect()) // Collect each inner iterator into a Vec<String>
/// .collect(); // Then collect everything into Vec<Vec<String>>
/// ```
///
/// ## Notes
///
/// - This function uses Unicode-aware sentence and word segmentation.
/// - Each sentence is wrapped with sentence start (`<s>`) and end (`</s>`) tokens.
/// - Words are prefixed with the word break character (`▁`).
/// - Unknown tokens are replaced with the `<unk>` token.
pub fn tokenize_sentences_iter<'a>(
&'a self,
text: &'a str,
) -> impl Iterator<Item = impl Iterator<Item = String> + 'a> + 'a {
UnicodeSegmentation::unicode_sentences(text)
.map(move |sentence| self.tokenize_with_sentence_markers_iter(sentence))
}
/// # Tokenizes a text into a flat sequence of BPE tokens.
///
/// This function takes a string of text and returns an iterator that yields
/// individual tokens. It first tokenizes the text into sentences, then words,
/// and finally into BPE tokens, flattening the result into a single sequence.
///
/// ## Arguments
///
/// * `text` - A string slice containing the text to be tokenized.
///
/// ## Returns
///
/// An iterator that yields `String`, where each `String` represents a token.
///
/// ## Example
///
/// ```
/// use bpe_tokenizer::BytePairEncoder;
///
/// let vocab = BytePairEncoder::new_from_str("hello\t1\nworld\t2").unwrap();
/// let text = "Hello, world! How are you?";
/// let tokenized: Vec<String> = vocab.tokenize_iter(text).collect();
/// ```
///
/// ## Notes
///
/// - This function uses Unicode-aware sentence and word segmentation.
/// - Each sentence is wrapped with sentence start (`<s>`) and end (`</s>`) tokens.
/// - Words are prefixed with the word break character (`▁`).
/// - Unknown tokens are replaced with the `<unk>` token.
pub fn tokenize_iter<'a>(&'a self, text: &'a str) -> impl Iterator<Item = String> + 'a {
self.tokenize_sentences_iter(text).flatten()
}
/// # Tokenizes a text into sentences, then words, and finally into BPE tokens.
///
/// This function takes a string of text and returns a vector of tokenized sentences,
/// where each sentence is represented as a vector of tokens.
///
/// ## Arguments
///
/// * `text` - A string slice containing the text to be tokenized.
///
/// ## Returns
///
/// A `Vec<Vec<String>>`, where each inner `Vec<String>` represents a tokenized sentence.
///
/// ## Example
///
/// ```
/// use bpe_tokenizer::BytePairEncoder;
///
/// let vocab = BytePairEncoder::new_from_str("hello\t1\nworld\t2").unwrap();
/// let text = "Hello, world! How are you?";
/// let tokenized = vocab.tokenize_sentences(text);
/// ```
///
/// ## Notes
///
/// - This function uses Unicode-aware sentence and word segmentation.
/// - Each sentence is wrapped with sentence start (`<s>`) and end (`</s>`) tokens.
/// - Words are prefixed with the word break character (`▁`).
/// - Unknown tokens are replaced with the `<unk>` token.
pub fn tokenize_sentences(&self, text: &str) -> Vec<Vec<String>> {
self.tokenize_sentences_iter(text)
.map(|sentence_iter| sentence_iter.collect())
.collect()
}
/// # Tokenizes a text into a flat sequence of BPE tokens.
///
/// This function takes a string of text and returns a vector of tokens.
/// It first tokenizes the text into sentences, then words, and finally into BPE tokens,
/// flattening the result into a single sequence.
///
/// ## Arguments
///
/// * `text` - A string slice containing the text to be tokenized.
///
/// ## Returns
///
/// A `Vec<String>`, where each `String` represents a token.
///
/// ## Example
///
/// ```
/// use bpe_tokenizer::BytePairEncoder;
///
/// let vocab = BytePairEncoder::new_from_str("hello\t1\nworld\t2").unwrap();
/// let text = "Hello, world! How are you?";
/// let tokenized = vocab.tokenize(text);
/// ```
///
/// ## Notes
///
/// - This function uses Unicode-aware sentence and word segmentation.
/// - Each sentence is wrapped with sentence start (`<s>`) and end (`</s>`) tokens.
/// - Words are prefixed with the word break character (`▁`).
/// - Unknown tokens are replaced with the `<unk>` token.
pub fn tokenize(&self, text: &str) -> Vec<String> {
self.tokenize_iter(text).collect()
}
/// # Tokenizes a single sentence, adding sentence start and end markers.
///
/// This function breaks down the tokenization process for a single sentence:
/// 1. Adds a sentence start token.
/// 2. Splits the sentence into words using Unicode-aware word segmentation.
/// 3. Prepends each word with the word break character.
/// 4. Tokenizes each word using the BPE vocabulary.
/// 5. Adds a sentence end token.
///
/// ## Arguments
///
/// * `sentence` - A string slice containing a single sentence to be tokenized.
///
/// ## Returns
///
/// An iterator that yields `String`s representing the tokenized sentence,
/// including start and end markers.
///
/// ## Implementation Notes
///
/// - Uses `unicode_words` for word segmentation to handle various Unicode scripts correctly.
/// - Converts words to lowercase before tokenization to match the vocabulary.
/// - Returns an iterator instead of a fully collected `Vec<String>` to allow for
/// more efficient tokenization and processing.
pub(crate) fn tokenize_with_sentence_markers_iter<'a>(
&'a self,
sentence: &'a str,
) -> impl Iterator<Item = String> + 'a {
iter::once(SENTENCE_START_TOKEN.to_string())
.chain(sentence.unicode_words().flat_map(move |word| {
self.tokenize_word(&format!("{}{}", WORD_BREAK_CHAR, word.to_lowercase()))
}))
.chain(iter::once(SENTENCE_END_TOKEN.to_string()))
}
/// # Tokenizes a single word using the Byte Pair Encoding (BPE) algorithm.
///
/// This function implements the core BPE tokenization logic:
/// 1. If the word is empty, return an empty vector.
/// 2. Convert the word to a vector of Unicode characters.
/// 3. Iterate through possible substrings of the word, from longest to shortest.
/// 4. For each substring length, find all matching tokens in the vocabulary.
/// 5. Choose the matching token with the highest score in the vocabulary.
/// 6. Split the word at the chosen token and recursively tokenize the parts before and after.
/// 7. If no match is found, return the unknown token.
///
/// ## Arguments
///
/// * `text` - A string slice containing a single word to be tokenized.
///
/// ## Returns
///
/// A `Vec<String>` containing the BPE tokens for the input word.
///
/// ## Implementation Notes
///
/// - The algorithm prioritizes longer matches over shorter ones.
/// - In case of multiple matches of the same length, it chooses the one with the highest score.
/// - The function is recursive, handling subwords created by splitting at a matched token.
/// - If no match is found in the vocabulary, it returns the unknown token.
pub(crate) fn tokenize_word(&self, text: &str) -> Vec<String> {
// Base case: If the input is empty, return an empty vector
if text.is_empty() {
return vec![];
}
// Convert the `text` to a Vec of `char`s to index by character rather than byte
let word: Vec<char> = text.chars().collect();
// Look for the longest matching token in the vocabulary
for len in (1..=word.len()).rev() {
let mut matches = vec![];
// Iterate over each possible start position for substrings of length `len`
for start in 0..=(word.len() - len) {
let end = start + len;
// Extract candidate substring (convert chars[start..end] back to a &str)
let candidate = &word[start..end].iter().collect::<String>();
// If we have an exact match, just store it for now
if self.tokens.contains_key(candidate) {
matches.push((candidate.to_string(), start, end));
}
}
// If we got matches, choose the one with the highest score
if !matches.is_empty() {
let (candidate, start, end) = matches
.into_iter()
.max_by_key(|(candidate, _, _)| {
self.tokens.get(candidate).copied().unwrap_or(isize::MIN)
})
.unwrap();
// Recursively process the left part (before the match)
let left: String = word[..start].iter().collect();
let left_tokens = self.tokenize_word(&left);
// The middle part is the matched token
let middle = vec![candidate];
// Recursively process the right part (after the match)
let right: String = word[end..].iter().collect();
let right_tokens = self.tokenize_word(&right);
// Concatenate the result of left, middle, and right
return [left_tokens, middle, right_tokens].concat();
}
}
// If no match is found, return <unk> for the whole text
vec![UNKNOWN_TOKEN.to_string()]
}
}