bparse/pattern.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
pub mod byte;
// The Clone & Copy super traits allow patterns to be re-used even when a function returns `impl Pattern`
/// Expresses that the implementing type may be used to match a slice with elements of type `T`.
pub trait Pattern<T>: Clone + Copy {
/// Evaluates the pattern against a slice of `T`s.
/// If the pattern matches, the length of matching slice should be returned.
/// Otherwise, `None` should be returned.
///
/// It is assumed that the pattern begins matching from the start of the slice.
fn eval(&self, input: &[T]) -> Option<usize>;
/// Returns a new pattern that will match if `self` and `other` match in sequence.
///
/// ```
/// use bparse::Pattern;
///
/// let pattern = "a".then("b");
/// assert_eq!(pattern.eval(b"abc"), Some(2));
/// ```
fn then<P>(self, other: P) -> Sequence<Self, P>
where
Self: Sized,
P: Pattern<T>,
{
Sequence {
pat1: self,
pat2: other,
}
}
/// Returns a new pattern that will match if either `self` or `other` match.
///
/// ```
/// use bparse::Pattern;
///
/// let pattern = "a".or("b");
/// assert_eq!(pattern.eval(b"ba"), Some(1));
/// ```
fn or<P>(self, other: P) -> Choice<Self, P>
where
Self: Sized,
P: Pattern<T>,
{
Choice {
pat1: self,
pat2: other,
}
}
}
impl<P, T> Pattern<T> for &P
where
P: Pattern<T>,
{
fn eval(&self, input: &[T]) -> Option<usize> {
(*self).eval(input)
}
}
/// See [`Pattern::or`]
#[derive(Clone, Copy, Debug)]
pub struct Choice<C1, C2> {
pat1: C1,
pat2: C2,
}
impl<P1, P2, T> Pattern<T> for Choice<P1, P2>
where
P1: Pattern<T>,
P2: Pattern<T>,
{
fn eval(&self, input: &[T]) -> Option<usize> {
match self.pat1.eval(input) {
Some(res) => Some(res),
None => self.pat2.eval(input),
}
}
}
/// See [`Pattern::then`]
#[derive(Clone, Copy, Debug)]
pub struct Sequence<P1, P2> {
pat1: P1,
pat2: P2,
}
impl<P1, P2, T> Pattern<T> for Sequence<P1, P2>
where
P1: Pattern<T>,
P2: Pattern<T>,
{
fn eval(&self, input: &[T]) -> Option<usize> {
if let Some(a) = self.pat1.eval(input) {
if let Some(b) = self.pat2.eval(&input[a..]) {
return Some(a + b);
}
}
None
}
}
/// Returns a new pattern that always matches the next element in the input if it exists.
///
/// ```
/// use bparse::{Pattern, one};
///
/// assert_eq!(one().eval(&[1, 2, 3]), Some(1));
/// ```
pub fn one() -> One {
One
}
/// See [`one`]
#[derive(Debug, Clone, Copy)]
pub struct One;
impl<T> Pattern<T> for One {
fn eval(&self, input: &[T]) -> Option<usize> {
if input.is_empty() {
return None;
}
Some(1)
}
}
/// Returns a new pattern that will match if `slice` is a prefix of the input.
///
/// ```
/// use bparse::{Pattern, prefix};
///
/// let pattern = prefix(&[1]);
/// assert_eq!(pattern.eval(&[1, 2, 3]), Some(1));
/// ```
pub fn prefix<T>(slice: &[T]) -> Prefix<T>
where
T: PartialEq,
T: Copy,
{
Prefix(slice)
}
/// See [`prefix`]
#[derive(Debug, Clone, Copy)]
pub struct Prefix<'p, T>(&'p [T]);
impl<T> Pattern<T> for Prefix<'_, T>
where
T: PartialEq,
T: Copy,
{
fn eval(&self, input: &[T]) -> Option<usize> {
if !input.starts_with(self.0) {
return None;
}
Some(self.0.len())
}
}
/// Returns a new pattern that will match an element in the closed interval `[lo, hi]`
///
/// ```
/// use bparse::{Pattern, range};
///
/// let pattern = range(b'a', b'z');
/// assert_eq!(pattern.eval(b"b"), Some(1));
/// ```
pub fn range<T>(lo: T, hi: T) -> ElementRange<T>
where
T: PartialOrd,
T: Copy,
{
ElementRange(lo, hi)
}
/// See [`range()`]
#[derive(Debug, Clone, Copy)]
pub struct ElementRange<T>(T, T);
impl<T> Pattern<T> for ElementRange<T>
where
T: PartialOrd,
T: Copy,
{
fn eval(&self, input: &[T]) -> Option<usize> {
let first = input.first()?;
if first >= &self.0 && first <= &self.1 {
return Some(1);
}
None
}
}
/// Returns a new pattern that matches as many repetitions as possible of the given `pattern`, including 0.
///
/// ```
/// use bparse::{Pattern, any};
///
/// assert_eq!(any("a").eval(b"aaa"), Some(3));
/// assert_eq!(any("a").eval(b"aa"), Some(2));
/// assert_eq!(any("a").eval(b""), Some(0));
/// ```
pub fn any<T, P>(pattern: P) -> Repetition<P>
where
P: Pattern<T>,
{
Repetition {
lo: 0,
hi: None,
pattern,
}
}
/// Returns a new pattern that matches at least `n` repetitions of `pattern`.
///
/// ```
/// use bparse::{Pattern, at_least};
///
/// assert_eq!(at_least(2, "a").eval(b"a"), None);
/// assert_eq!(at_least(2, "a").eval(b"aaa"), Some(3));
/// ```
pub fn at_least<T, P>(n: usize, pattern: P) -> Repetition<P>
where
P: Pattern<T>,
{
Repetition {
lo: n,
hi: None,
pattern,
}
}
/// Returns a new pattern that matches at most `n` repetitions of `pattern`.
///
/// ```
/// use bparse::{Pattern, at_most};
///
/// assert_eq!(at_most(2, "b").eval(b"b"), Some(1));
/// assert_eq!(at_most(2, "b").eval(b"bbbb"), Some(2));
/// assert_eq!(at_most(2, "b").eval(b"aa"), Some(0));
/// ```
pub fn at_most<T, P>(n: usize, pattern: P) -> Repetition<P>
where
P: Pattern<T>,
{
Repetition {
lo: 0,
hi: Some(n),
pattern,
}
}
/// Returns a new pattern that matches 0 or 1 repetitions of `pattern`
///
/// This implies the new pattern always matches the input.
///
/// ```
/// use bparse::{Pattern, optional};
///
/// assert_eq!(optional("a").eval(b"b"), Some(0));
/// assert_eq!(optional("a").eval(b"a"), Some(1));
/// ```
pub fn optional<T, P>(pattern: P) -> Repetition<P>
where
P: Pattern<T>,
{
Repetition {
lo: 0,
hi: Some(1),
pattern,
}
}
/// Returns a new pattern that matches exactly `n` repetitions of `pattern`.
///
/// ```
/// use bparse::{Pattern, count};
///
/// assert_eq!(count(2, "z").eval(b"zzz"), Some(2));
/// assert_eq!(count(2, "z").eval(b"z"), None);
/// ```
pub fn count<T, P>(n: usize, pattern: P) -> Repetition<P>
where
P: Pattern<T>,
{
Repetition {
lo: n,
hi: Some(n),
pattern,
}
}
/// Returns a new pattern that matches between `lo` and `hi` repetitions of `pattern`.
///
/// Both bounds are inclusive.
pub fn between<T, P>(lo: usize, hi: usize, pattern: P) -> Repetition<P>
where
P: Pattern<T>,
{
Repetition {
lo,
hi: Some(hi),
pattern,
}
}
/// Exppresses pattern repetition.
///
/// Many patterns (e.g. [`between`], [`optional`], [`at_least`]) are expressed in terms of this pattern.
#[derive(Debug, Clone, Copy)]
pub struct Repetition<P> {
pattern: P,
lo: usize,
hi: Option<usize>,
}
impl<T, P> Pattern<T> for Repetition<P>
where
P: Pattern<T>,
{
fn eval<'i>(&self, input: &[T]) -> Option<usize> {
let mut match_count = 0;
let mut offset = 0;
if let Some(upper_bound) = self.hi {
assert!(
upper_bound >= self.lo,
"upper bound should be greater than or equal to the lower bound"
);
};
loop {
// We hit the upper bound of pattern repetition
if let Some(upper_bound) = self.hi {
if match_count == upper_bound {
return Some(offset);
}
};
let Some(value) = self.pattern.eval(&input[offset..]) else {
if match_count < self.lo {
return None;
}
return Some(offset);
};
match_count += 1;
offset += value;
}
}
}
/// Returns a new pattern that matches only if `pattern` does not match
///
/// This pattern returns `Some(0)` if the underlying pattern did not match which makes it function as a negative lookahead.
pub fn not<T, P>(pattern: P) -> Not<P>
where
P: Pattern<T>,
{
Not(pattern)
}
/// See [`not`]
#[derive(Debug, Clone, Copy)]
pub struct Not<P>(P);
impl<I, P> Pattern<I> for Not<P>
where
P: Pattern<I>,
{
fn eval<'i>(&self, input: &[I]) -> Option<usize> {
if self.0.eval(input).is_some() {
return None;
}
Some(0)
}
}
#[cfg(test)]
mod tests {
use super::byte::*;
use super::*;
#[test]
fn match_bytes() {
assert_eq!("".eval(b""), Some(0));
assert_eq!("".eval(b"a1b2"), Some(0));
assert_eq!("a".eval(b"a1"), Some(1));
assert_eq!("a1b".eval(b"a1"), None);
assert_eq!("١".eval(b"\xd9\xa1"), Some(2));
}
#[test]
fn match_range() {
assert_eq!(range(b'a', b'z').eval(b"d"), Some(1));
assert_eq!(range(b'a', b'z').eval(b"0"), None);
}
#[test]
fn match_oneof_noneof() {
assert_eq!(oneof(b"abc").eval(b"a"), Some(1));
assert_eq!(noneof(b"abc").eval(b"1"), Some(1));
assert_eq!(oneof(b"abc").eval(b"123"), None);
}
#[test]
fn match_repetition() {
assert_eq!(between(0, 0, "a").eval(b"aabb"), Some(0));
assert_eq!(between(1, 1, "a").eval(b"aabb"), Some(1));
assert_eq!(between(1, 2, "a").eval(b"aabb"), Some(2));
assert_eq!(between(1, 10, "a").eval(b"aabb"), Some(2));
assert_eq!(at_least(0, "a").eval(b"aaaab"), Some(4));
assert_eq!(at_least(4, "a").eval(b"aaaab"), Some(4));
assert_eq!(at_least(10, "a").eval(b"aaaab"), None);
assert_eq!(at_most(3, "a").eval(b"bb"), Some(0));
assert_eq!(at_most(0, "a").eval(b"aaabb"), Some(0));
assert_eq!(at_most(1, "a").eval(b"aaabb"), Some(1));
assert_eq!(at_most(10, "a").eval(b"aaabb"), Some(3));
assert_eq!(optional("a").eval(b"aa"), Some(1));
assert_eq!(optional("a").eval(b"baa"), Some(0));
assert_eq!(any("a").eval(b"aaa"), Some(3));
assert_eq!(any("a").eval(b""), Some(0));
}
#[test]
fn match_negative_lookahead() {
assert_eq!(not("b").eval(b"a"), Some(0));
assert_eq!(not("a").eval(b"a"), None);
}
#[test]
fn match_choice() {
assert_eq!("a".or("b").eval(b"b"), Some(1));
assert_eq!("a".or("b").eval(b"a"), Some(1));
assert_eq!("a".or("b").eval(b"c"), None);
}
#[test]
fn match_sequence() {
assert_eq!("a".then("b").eval(b"ab"), Some(2));
assert_eq!("a".then("c").eval(b"ab"), None);
assert_eq!("z".then("b").eval(b"ab"), None);
}
#[test]
fn patterns_are_reusable() {
let pattern = "a".then("b".or("c"));
assert_eq!(pattern.eval(b"ac"), Some(2));
assert_eq!(pattern.eval(b"ab"), Some(2));
}
}