1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// Bitcoin protocol primitives library.
//
// SPDX-License-Identifier: Apache-2.0
//
// Written in 2019-2023 by
//     Dr Maxim Orlovsky <orlovsky@lnp-bp.org>
//
// Copyright (C) 2019-2023 LNP/BP Standards Association. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::fmt::{Formatter, LowerHex, UpperHex};

use amplify::confinement::Confined;
use amplify::hex::{self, FromHex, ToHex};

use crate::opcodes::*;
use crate::{VarInt, VarIntArray, LIB_NAME_BITCOIN};

#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Display)]
#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
// TODO: Replace `try_from` with `from` since opcodes cover whole range of u8
#[strict_type(lib = LIB_NAME_BITCOIN, tags = repr, into_u8, try_from_u8)]
#[non_exhaustive]
#[repr(u8)]
pub enum OpCode {
    /// Push an empty array onto the stack.
    #[display("OP_PUSH_BYTES0")]
    PushBytes0 = OP_PUSHBYTES_0,

    /// Push the next 32 bytes as an array onto the stack.
    #[display("OP_PUSH_BYTES32")]
    PushBytes32 = OP_PUSHBYTES_32,

    /// Synonym for OP_RETURN.
    Reserved = OP_RESERVED,

    /// Fail the script immediately.
    #[display("OP_RETURN")]
    #[strict_type(dumb)]
    Return = OP_RETURN,

    /// Read the next byte as N; push the next N bytes as an array onto the
    /// stack.
    #[display("OP_PUSH_DATA1")]
    PushData1 = OP_PUSHDATA1,
    /// Read the next 2 bytes as N; push the next N bytes as an array onto the
    /// stack.
    #[display("OP_PUSH_DATA2")]
    PushData2 = OP_PUSHDATA2,
    /// Read the next 4 bytes as N; push the next N bytes as an array onto the
    /// stack.
    #[display("OP_PUSH_DATA3")]
    PushData4 = OP_PUSHDATA4,

    /// Push the array `0x01` onto the stack.
    #[display("OP_PUSHNUM_1")]
    PushNum1 = OP_PUSHNUM_1,

    /// Duplicates the top stack item.
    #[display("OP_DUP")]
    Dup = OP_DUP,

    /// Pushes 1 if the inputs are exactly equal, 0 otherwise.
    #[display("OP_EQUAL")]
    Equal = OP_EQUAL,

    /// Returns success if the inputs are exactly equal, failure otherwise.
    #[display("OP_EQUALVERIFY")]
    EqualVerify = OP_EQUALVERIFY,

    /// Pop the top stack item and push its RIPEMD160 hash.
    #[display("OP_RIPEMD160")]
    Ripemd160 = OP_RIPEMD160,

    /// Pop the top stack item and push its SHA1 hash.
    #[display("OP_SHA1")]
    Sha1 = OP_SHA1,

    /// Pop the top stack item and push its SHA256 hash.
    #[display("OP_SHA256")]
    Sha256 = OP_SHA256,

    /// Pop the top stack item and push its RIPEMD(SHA256) hash.
    #[display("OP_HASH160")]
    Hash160 = OP_HASH160,

    /// Pop the top stack item and push its SHA256(SHA256) hash.
    #[display("OP_HASH256")]
    Hash256 = OP_HASH256,

    /// <https://en.bitcoin.it/wiki/OP_CHECKSIG> pushing 1/0 for success/failure.
    #[display("OP_CHECKSIG")]
    CheckSig = OP_CHECKSIG,

    /// <https://en.bitcoin.it/wiki/OP_CHECKSIG> returning success/failure.
    #[display("OP_CHECKSIGVERIFY")]
    CheckSigVerify = OP_CHECKSIGVERIFY,
}

#[derive(Wrapper, WrapperMut, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug, From, Default)]
#[wrapper(Deref, Index, RangeOps, BorrowSlice, LowerHex, UpperHex)]
#[wrapper_mut(DerefMut, IndexMut, RangeMut, BorrowSliceMut)]
#[derive(StrictType, StrictEncode, StrictDecode)]
#[strict_type(lib = LIB_NAME_BITCOIN)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate", transparent)
)]
pub struct SigScript(
    #[from]
    #[from(Vec<u8>)]
    ScriptBytes,
);

impl FromHex for SigScript {
    fn from_hex(s: &str) -> Result<Self, hex::Error> { ScriptBytes::from_hex(s).map(Self) }

    fn from_byte_iter<I>(_: I) -> Result<Self, hex::Error>
    where I: Iterator<Item = Result<u8, hex::Error>> + ExactSizeIterator + DoubleEndedIterator {
        unreachable!()
    }
}

impl SigScript {
    pub fn empty() -> Self { SigScript::default() }
    pub fn as_script_bytes(&self) -> &ScriptBytes { &self.0 }
}

#[derive(Wrapper, WrapperMut, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug, From, Default)]
#[wrapper(Deref, Index, RangeOps, BorrowSlice, LowerHex, UpperHex)]
#[wrapper_mut(DerefMut, IndexMut, RangeMut, BorrowSliceMut)]
#[derive(StrictType, StrictEncode, StrictDecode)]
#[strict_type(lib = LIB_NAME_BITCOIN)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate", transparent)
)]
pub struct ScriptPubkey(
    #[from]
    #[from(Vec<u8>)]
    ScriptBytes,
);

impl ScriptPubkey {
    pub fn new() -> Self { Self::default() }

    pub fn with_capacity(capacity: usize) -> Self {
        Self(ScriptBytes::from(Confined::with_capacity(capacity)))
    }

    pub fn p2pkh(hash: impl Into<[u8; 20]>) -> Self {
        let mut script = Self::with_capacity(25);
        script.push_opcode(OpCode::Dup);
        script.push_opcode(OpCode::Hash160);
        script.push_slice(&hash.into());
        script.push_opcode(OpCode::EqualVerify);
        script.push_opcode(OpCode::CheckSig);
        script
    }

    pub fn p2sh(hash: impl Into<[u8; 20]>) -> Self {
        let mut script = Self::with_capacity(23);
        script.push_opcode(OpCode::Hash160);
        script.push_slice(&hash.into());
        script.push_opcode(OpCode::Equal);
        script
    }

    pub fn op_return(data: &[u8]) -> Self {
        let mut script = Self::with_capacity(ScriptBytes::len_for_slice(data.len()) + 1);
        script.push_opcode(OpCode::Return);
        script.push_slice(data);
        script
    }

    /// Checks whether a script pubkey is a P2PKH output.
    #[inline]
    pub fn is_p2pkh(&self) -> bool {
        self.0.len() == 25 &&
            self.0[0] == OP_DUP &&
            self.0[1] == OP_HASH160 &&
            self.0[2] == OP_PUSHBYTES_20 &&
            self.0[23] == OP_EQUALVERIFY &&
            self.0[24] == OP_CHECKSIG
    }

    /// Checks whether a script pubkey is a P2SH output.
    #[inline]
    pub fn is_p2sh(&self) -> bool {
        self.0.len() == 23 &&
            self.0[0] == OP_HASH160 &&
            self.0[1] == OP_PUSHBYTES_20 &&
            self.0[22] == OP_EQUAL
    }

    pub fn is_op_return(&self) -> bool { self[0] == OpCode::Return as u8 }

    /// Adds a single opcode to the script.
    pub fn push_opcode(&mut self, op_code: OpCode) { self.0.push(op_code as u8) }

    pub fn as_script_bytes(&self) -> &ScriptBytes { &self.0 }
}

impl FromHex for ScriptPubkey {
    fn from_hex(s: &str) -> Result<Self, hex::Error> { ScriptBytes::from_hex(s).map(Self) }

    fn from_byte_iter<I>(_: I) -> Result<Self, hex::Error>
    where I: Iterator<Item = Result<u8, hex::Error>> + ExactSizeIterator + DoubleEndedIterator {
        unreachable!()
    }
}

#[derive(Wrapper, WrapperMut, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug, From, Default)]
#[wrapper(Deref, Index, RangeOps, BorrowSlice, LowerHex, UpperHex)]
#[wrapper_mut(DerefMut, IndexMut, RangeMut, BorrowSliceMut)]
#[derive(StrictType, StrictEncode, StrictDecode)]
#[strict_type(lib = LIB_NAME_BITCOIN)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate", transparent)
)]
pub struct RedeemScript(
    #[from]
    #[from(Vec<u8>)]
    ScriptBytes,
);

impl RedeemScript {
    pub fn new() -> Self { Self::default() }

    pub fn with_capacity(capacity: usize) -> Self {
        Self(ScriptBytes::from(Confined::with_capacity(capacity)))
    }

    /// Adds a single opcode to the script.
    pub fn push_opcode(&mut self, op_code: OpCode) { self.0.push(op_code as u8); }

    pub fn as_script_bytes(&self) -> &ScriptBytes { &self.0 }
}

impl FromHex for RedeemScript {
    fn from_hex(s: &str) -> Result<Self, hex::Error> { ScriptBytes::from_hex(s).map(Self) }

    fn from_byte_iter<I>(_: I) -> Result<Self, hex::Error>
    where I: Iterator<Item = Result<u8, hex::Error>> + ExactSizeIterator + DoubleEndedIterator {
        unreachable!()
    }
}

#[derive(Wrapper, WrapperMut, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Default, Debug, From)]
#[derive(StrictType, StrictEncode, StrictDecode)]
#[strict_type(lib = LIB_NAME_BITCOIN)]
#[wrapper(Deref, Index, RangeOps, BorrowSlice)]
#[wrapper_mut(DerefMut, IndexMut, RangeMut, BorrowSliceMut)]
pub struct ScriptBytes(VarIntArray<u8>);

impl From<Vec<u8>> for ScriptBytes {
    fn from(value: Vec<u8>) -> Self { Self(Confined::try_from(value).expect("u64 >= usize")) }
}

impl LowerHex for ScriptBytes {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.write_str(&self.0.as_inner().to_hex())
    }
}

impl UpperHex for ScriptBytes {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.write_str(&self.0.as_inner().to_hex().to_uppercase())
    }
}

impl FromHex for ScriptBytes {
    fn from_hex(s: &str) -> Result<Self, hex::Error> { Vec::<u8>::from_hex(s).map(Self::from) }
    fn from_byte_iter<I>(_: I) -> Result<Self, hex::Error>
    where I: Iterator<Item = Result<u8, hex::Error>> + ExactSizeIterator + DoubleEndedIterator {
        unreachable!()
    }
}

impl ScriptBytes {
    /// Adds instructions to push some arbitrary data onto the stack.
    ///
    /// ## Panics
    ///
    /// The method panics if `data` length is greater or equal to
    /// 0x100000000.
    pub fn push_slice(&mut self, data: &[u8]) {
        // Start with a PUSH opcode
        match data.len() as u64 {
            n if n < OP_PUSHDATA1 as u64 => {
                self.push(n as u8);
            }
            n if n < 0x100 => {
                self.push(OP_PUSHDATA1);
                self.push(n as u8);
            }
            n if n < 0x10000 => {
                self.push(OP_PUSHDATA2);
                self.push((n % 0x100) as u8);
                self.push((n / 0x100) as u8);
            }
            n if n < 0x100000000 => {
                self.push(OP_PUSHDATA4);
                self.push((n % 0x100) as u8);
                self.push(((n / 0x100) % 0x100) as u8);
                self.push(((n / 0x10000) % 0x100) as u8);
                self.push((n / 0x1000000) as u8);
            }
            _ => panic!("tried to put a 4bn+ sized object into a script!"),
        }
        // Then push the raw bytes
        self.extend(data);
    }

    #[inline]
    pub(crate) fn push(&mut self, data: u8) { self.0.push(data).expect("script exceeds 4GB") }

    #[inline]
    pub(crate) fn extend(&mut self, data: &[u8]) {
        self.0
            .extend(data.iter().copied())
            .expect("script exceeds 4GB")
    }

    /// Computes the sum of `len` and the lenght of an appropriate push
    /// opcode.
    pub fn len_for_slice(len: usize) -> usize {
        len + match len {
            0..=0x4b => 1,
            0x4c..=0xff => 2,
            0x100..=0xffff => 3,
            // we don't care about oversized, the other fn will panic anyway
            _ => 5,
        }
    }

    pub fn len_var_int(&self) -> VarInt { VarInt(self.len() as u64) }

    pub fn into_vec(self) -> Vec<u8> { self.0.into_inner() }

    pub(crate) fn as_var_int_array(&self) -> &VarIntArray<u8> { &self.0 }
}

#[cfg(feature = "serde")]
mod _serde {
    use serde::{Deserialize, Serialize};
    use serde_crate::de::Error;
    use serde_crate::{Deserializer, Serializer};

    use super::*;

    impl Serialize for ScriptBytes {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where S: Serializer {
            if serializer.is_human_readable() {
                serializer.serialize_str(&self.to_hex())
            } else {
                serializer.serialize_bytes(self.as_slice())
            }
        }
    }

    impl<'de> Deserialize<'de> for ScriptBytes {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where D: Deserializer<'de> {
            if deserializer.is_human_readable() {
                String::deserialize(deserializer).and_then(|string| {
                    Self::from_hex(&string).map_err(|_| D::Error::custom("wrong hex data"))
                })
            } else {
                Vec::<u8>::deserialize(deserializer).map(ScriptBytes::from)
            }
        }
    }
}