bc/
tx.rs

1// Bitcoin protocol consensus library.
2//
3// SPDX-License-Identifier: Apache-2.0
4//
5// Written in 2019-2024 by
6//     Dr Maxim Orlovsky <orlovsky@lnp-bp.org>
7//
8// Copyright (C) 2019-2024 LNP/BP Standards Association. All rights reserved.
9//
10// Licensed under the Apache License, Version 2.0 (the "License");
11// you may not use this file except in compliance with the License.
12// You may obtain a copy of the License at
13//
14//     http://www.apache.org/licenses/LICENSE-2.0
15//
16// Unless required by applicable law or agreed to in writing, software
17// distributed under the License is distributed on an "AS IS" BASIS,
18// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19// See the License for the specific language governing permissions and
20// limitations under the License.
21
22use core::slice;
23use std::fmt::{self, Debug, Display, Formatter, LowerHex};
24use std::iter::Sum;
25use std::num::ParseIntError;
26use std::ops::{Div, Rem};
27use std::str::FromStr;
28
29use amplify::hex::{self, FromHex, ToHex};
30use amplify::{ByteArray, Bytes32StrRev, Wrapper};
31use commit_verify::{DigestExt, Sha256};
32
33use crate::{
34    ConsensusDecode, ConsensusDecodeError, ConsensusEncode, LockTime, NonStandardValue,
35    ScriptPubkey, SeqNo, SigScript, VarIntArray, Witness, Wtxid, LIB_NAME_BITCOIN,
36};
37
38#[derive(Wrapper, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, From)]
39#[wrapper(AsSlice)]
40#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
41#[strict_type(lib = LIB_NAME_BITCOIN)]
42#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(transparent))]
43#[wrapper(BorrowSlice, Index, RangeOps, Debug, Hex, Display, FromStr)]
44// all-zeros used in coinbase
45pub struct Txid(
46    #[from]
47    #[from([u8; 32])]
48    Bytes32StrRev,
49);
50
51impl From<Txid> for [u8; 32] {
52    fn from(txid: Txid) -> Self { txid.to_byte_array() }
53}
54
55impl Txid {
56    #[inline]
57    pub const fn coinbase() -> Self { Self(Bytes32StrRev::zero()) }
58    #[inline]
59    pub fn is_coinbase(&self) -> bool { self.to_byte_array() == [0u8; 32] }
60}
61
62#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Display, From)]
63#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
64#[strict_type(lib = LIB_NAME_BITCOIN)]
65#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(transparent))]
66#[display(inner)]
67// 0xFFFFFFFF used in coinbase
68pub struct Vout(u32);
69
70impl Vout {
71    pub const fn from_u32(u: u32) -> Self { Vout(u) }
72    #[inline]
73    pub const fn into_u32(self) -> u32 { self.0 }
74    #[inline]
75    pub const fn into_usize(self) -> usize { self.0 as usize }
76    #[inline]
77    pub const fn to_u32(&self) -> u32 { self.0 }
78    #[inline]
79    pub const fn to_usize(&self) -> usize { self.0 as usize }
80}
81
82impl FromStr for Vout {
83    type Err = ParseIntError;
84
85    #[inline]
86    fn from_str(s: &str) -> Result<Self, Self::Err> { s.parse().map(Self) }
87}
88
89#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Display)]
90#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
91#[strict_type(lib = LIB_NAME_BITCOIN)]
92#[display("{txid}:{vout}")]
93pub struct Outpoint {
94    pub txid: Txid,
95    pub vout: Vout,
96}
97
98impl Outpoint {
99    #[inline]
100    pub fn new(txid: Txid, vout: impl Into<Vout>) -> Self {
101        Self {
102            txid,
103            vout: vout.into(),
104        }
105    }
106
107    #[inline]
108    pub const fn coinbase() -> Self {
109        Self {
110            txid: Txid::coinbase(),
111            vout: Vout::from_u32(0),
112        }
113    }
114
115    #[inline]
116    pub fn vout_u32(self) -> u32 { self.vout.into_u32() }
117
118    #[inline]
119    pub fn vout_usize(self) -> usize { self.vout.into_usize() }
120
121    #[inline]
122    pub fn is_coinbase(&self) -> bool { self.txid.is_coinbase() && self.vout.into_u32() == 0 }
123}
124
125#[derive(Clone, Eq, PartialEq, Debug, Display, From, Error)]
126#[display(doc_comments)]
127pub enum OutpointParseError {
128    /// malformed string representation of outoint '{0}' lacking txid and vout
129    /// separator ':'
130    MalformedSeparator(String),
131
132    /// malformed outpoint output number. Details: {0}
133    #[from]
134    InvalidVout(ParseIntError),
135
136    /// malformed outpoint txid value. Details: {0}
137    #[from]
138    InvalidTxid(hex::Error),
139}
140
141impl FromStr for Outpoint {
142    type Err = OutpointParseError;
143
144    fn from_str(s: &str) -> Result<Self, Self::Err> {
145        let (txid, vout) = s
146            .split_once(':')
147            .ok_or_else(|| OutpointParseError::MalformedSeparator(s.to_owned()))?;
148        Ok(Outpoint::new(txid.parse()?, Vout::from_str(vout)?))
149    }
150}
151
152#[cfg(feature = "serde")]
153mod _serde_outpoint {
154    use serde::de::{SeqAccess, Visitor};
155    use serde::ser::SerializeTuple;
156    use serde::{Deserialize, Deserializer, Serialize, Serializer};
157
158    use super::*;
159
160    impl Serialize for Outpoint {
161        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
162        where S: Serializer {
163            if serializer.is_human_readable() {
164                serializer.serialize_str(&self.to_string())
165            } else {
166                let mut ser = serializer.serialize_tuple(2)?;
167                ser.serialize_element(&self.txid)?;
168                ser.serialize_element(&self.vout)?;
169                ser.end()
170            }
171        }
172    }
173
174    impl<'de> Deserialize<'de> for Outpoint {
175        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
176        where D: Deserializer<'de> {
177            use serde::de::Error;
178            if deserializer.is_human_readable() {
179                String::deserialize(deserializer).and_then(|string| {
180                    Self::from_str(&string)
181                        .map_err(|_| D::Error::custom("wrong outpoint string representation"))
182                })
183            } else {
184                struct OutpointVisitor;
185
186                impl<'de> Visitor<'de> for OutpointVisitor {
187                    type Value = Outpoint;
188
189                    fn expecting(&self, formatter: &mut Formatter) -> fmt::Result {
190                        write!(formatter, "a transaction outpoint")
191                    }
192
193                    fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
194                    where A: SeqAccess<'de> {
195                        let mut outpoint = Outpoint::coinbase();
196                        outpoint.txid =
197                            seq.next_element()?.ok_or_else(|| Error::invalid_length(0, &self))?;
198                        outpoint.vout =
199                            seq.next_element()?.ok_or_else(|| Error::invalid_length(1, &self))?;
200                        Ok(outpoint)
201                    }
202                }
203
204                deserializer.deserialize_tuple(2, OutpointVisitor)
205            }
206        }
207    }
208}
209
210#[derive(Clone, Eq, PartialEq, Hash, Debug)]
211#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
212#[strict_type(lib = LIB_NAME_BITCOIN)]
213#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(rename_all = "camelCase"))]
214pub struct TxIn {
215    pub prev_output: Outpoint,
216    pub sig_script: SigScript,
217    pub sequence: SeqNo,
218    pub witness: Witness,
219}
220
221#[derive(
222    Wrapper, WrapperMut, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, From, Default
223)]
224#[wrapper(Add, Sub, Mul, Div, FromStr)]
225#[wrapper_mut(MathAssign)]
226#[derive(StrictType, StrictEncode, StrictDecode)]
227#[strict_type(lib = LIB_NAME_BITCOIN)]
228#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(transparent))]
229pub struct Sats(
230    #[from]
231    #[from(u32)]
232    #[from(u16)]
233    #[from(u8)]
234    pub u64,
235);
236
237impl Sats {
238    pub const ZERO: Self = Sats(0);
239    #[allow(clippy::inconsistent_digit_grouping)]
240    pub const BTC: Self = Sats(1_000_000_00);
241    pub const MAX: Self = Sats(u64::MAX);
242
243    pub const fn from_btc(btc: u32) -> Self { Self(btc as u64 * Self::BTC.0) }
244    pub fn from_sats(sats: impl Into<u64>) -> Self { Self(sats.into()) }
245
246    pub const fn is_zero(&self) -> bool { self.0 == 0 }
247    pub const fn is_non_zero(&self) -> bool { self.0 != 0 }
248
249    pub const fn btc_round(&self) -> u64 {
250        if self.0 == 0 {
251            return 0;
252        }
253        let inc = 2 * self.sats_rem() / Self::BTC.0;
254        self.0 / Self::BTC.0 + inc
255    }
256
257    pub const fn btc_ceil(&self) -> u64 {
258        if self.0 == 0 {
259            return 0;
260        }
261        let inc = if self.sats_rem() > 0 { 1 } else { 0 };
262        self.0 / Self::BTC.0 + inc
263    }
264
265    pub const fn btc_floor(&self) -> u64 {
266        if self.0 == 0 {
267            return 0;
268        }
269        self.0 / Self::BTC.0
270    }
271
272    pub const fn sats(&self) -> u64 { self.0 }
273
274    pub fn sats_i64(&self) -> i64 {
275        i64::try_from(self.0).expect("amount of sats exceeds total bitcoin supply")
276    }
277
278    pub const fn sats_rem(&self) -> u64 { self.0 % Self::BTC.0 }
279
280    pub const fn btc_sats(&self) -> (u64, u64) { (self.btc_floor(), self.sats_rem()) }
281
282    #[must_use]
283    pub fn checked_add(&self, other: impl Into<Self>) -> Option<Self> {
284        self.0.checked_add(other.into().0).map(Self)
285    }
286    #[must_use]
287    pub fn checked_sub(&self, other: impl Into<Self>) -> Option<Self> {
288        self.0.checked_sub(other.into().0).map(Self)
289    }
290
291    #[must_use]
292    pub fn checked_add_assign(&mut self, other: impl Into<Self>) -> Option<Self> {
293        *self = Self(self.0.checked_add(other.into().0)?);
294        Some(*self)
295    }
296
297    #[must_use]
298    pub fn checked_sub_assign(&mut self, other: impl Into<Self>) -> Option<Self> {
299        *self = Self(self.0.checked_sub(other.into().0)?);
300        Some(*self)
301    }
302
303    #[must_use]
304    pub fn saturating_add(&self, other: impl Into<Self>) -> Self {
305        self.0.saturating_add(other.into().0).into()
306    }
307
308    #[must_use]
309    pub fn saturating_sub(&self, other: impl Into<Self>) -> Self {
310        self.0.saturating_sub(other.into().0).into()
311    }
312
313    pub fn saturating_add_assign(&mut self, other: impl Into<Self>) {
314        *self = self.0.saturating_add(other.into().0).into();
315    }
316    pub fn saturating_sub_assign(&mut self, other: impl Into<Self>) {
317        *self = self.0.saturating_sub(other.into().0).into();
318    }
319}
320
321impl PartialEq<u64> for Sats {
322    fn eq(&self, other: &u64) -> bool { self.0.eq(other) }
323}
324
325impl Sum for Sats {
326    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
327        iter.fold(Sats::ZERO, |sum, value| sum.saturating_add(value))
328    }
329}
330
331impl Sum<u64> for Sats {
332    fn sum<I: Iterator<Item = u64>>(iter: I) -> Self {
333        iter.fold(Sats::ZERO, |sum, value| sum.saturating_add(value))
334    }
335}
336
337impl Div<usize> for Sats {
338    type Output = Sats;
339    fn div(self, rhs: usize) -> Self::Output { Sats(self.0 / rhs as u64) }
340}
341
342impl Rem<usize> for Sats {
343    type Output = Sats;
344    fn rem(self, rhs: usize) -> Self::Output { Sats(self.0 % rhs as u64) }
345}
346
347impl Display for Sats {
348    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { Display::fmt(&self.0, f) }
349}
350
351#[derive(Clone, Eq, PartialEq, Hash, Debug, Default)]
352#[derive(StrictType, StrictEncode, StrictDecode)]
353#[strict_type(lib = LIB_NAME_BITCOIN)]
354#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(rename_all = "camelCase"))]
355pub struct TxOut {
356    pub value: Sats,
357    pub script_pubkey: ScriptPubkey,
358}
359
360impl TxOut {
361    pub fn new(script_pubkey: impl Into<ScriptPubkey>, value: impl Into<Sats>) -> Self {
362        TxOut {
363            script_pubkey: script_pubkey.into(),
364            value: value.into(),
365        }
366    }
367}
368
369#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)]
370#[derive(StrictType, StrictEncode, StrictDecode)]
371#[strict_type(lib = LIB_NAME_BITCOIN)]
372#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
373pub struct TxVer(i32);
374
375impl Default for TxVer {
376    fn default() -> Self { TxVer(2) }
377}
378
379impl TxVer {
380    /// Pre-BIP68 version.
381    pub const V1: Self = TxVer(1);
382    /// Current version (post-BIP68).
383    pub const V2: Self = TxVer(2);
384
385    #[inline]
386    pub const fn from_consensus_i32(ver: i32) -> Self { TxVer(ver) }
387
388    pub const fn try_from_standard(ver: i32) -> Result<Self, NonStandardValue<i32>> {
389        let ver = TxVer::from_consensus_i32(ver);
390        if !ver.is_standard() {
391            Err(NonStandardValue::with(ver.0, "TxVer"))
392        } else {
393            Ok(ver)
394        }
395    }
396
397    #[inline]
398    pub const fn is_standard(self) -> bool { self.0 <= TxVer::V2.0 }
399
400    #[inline]
401    pub const fn to_consensus_i32(&self) -> i32 { self.0 }
402}
403
404#[derive(Clone, Eq, PartialEq, Hash, Debug, Display)]
405#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
406#[strict_type(lib = LIB_NAME_BITCOIN)]
407#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(rename_all = "camelCase"))]
408#[display(LowerHex)]
409pub struct Tx {
410    pub version: TxVer,
411    pub inputs: VarIntArray<TxIn>,
412    pub outputs: VarIntArray<TxOut>,
413    pub lock_time: LockTime,
414}
415
416impl LowerHex for Tx {
417    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
418        f.write_str(&self.consensus_serialize().to_hex())
419    }
420}
421
422#[derive(Clone, PartialEq, Eq, Debug, Display, Error, From)]
423#[display(inner)]
424pub enum BlockDataParseError {
425    #[from]
426    Hex(hex::Error),
427    #[from]
428    Consensus(ConsensusDecodeError),
429}
430
431impl FromStr for Tx {
432    type Err = BlockDataParseError;
433
434    fn from_str(s: &str) -> Result<Self, Self::Err> {
435        let data = Vec::<u8>::from_hex(s)?;
436        Tx::consensus_deserialize(data).map_err(BlockDataParseError::from)
437    }
438}
439
440impl Tx {
441    #[inline]
442    pub fn inputs(&self) -> slice::Iter<TxIn> { self.inputs.iter() }
443
444    #[inline]
445    pub fn outputs(&self) -> slice::Iter<TxOut> { self.outputs.iter() }
446
447    #[inline]
448    pub fn is_segwit(&self) -> bool { self.inputs().any(|txin| !txin.witness.is_empty()) }
449
450    #[inline]
451    pub fn to_unsigned_tx(&self) -> Tx {
452        let mut tx = self.clone();
453        for input in &mut tx.inputs {
454            input.sig_script = SigScript::empty();
455            input.witness = empty!();
456        }
457        tx
458    }
459
460    /// Computes a "normalized TXID" which does not include any signatures.
461    ///
462    /// This gives a way to identify a transaction that is "the same" as
463    /// another in the sense of having same inputs and outputs.
464    pub fn ntxid(&self) -> [u8; 32] { self.to_unsigned_tx().txid().to_byte_array() }
465
466    /// Computes the [`Txid`].
467    ///
468    /// Hashes the transaction **excluding** the segwit data (i.e. the marker,
469    /// flag bytes, and the witness fields themselves). For non-segwit
470    /// transactions which do not have any segwit data, this will be equal
471    /// to [`Tx::wtxid()`].
472    pub fn txid(&self) -> Txid {
473        let mut enc = Sha256::default();
474        self.version.consensus_encode(&mut enc).expect("engines don't error");
475        self.inputs.consensus_encode(&mut enc).expect("engines don't error");
476        self.outputs.consensus_encode(&mut enc).expect("engines don't error");
477        self.lock_time.consensus_encode(&mut enc).expect("engines don't error");
478        let mut double = Sha256::default();
479        double.input_raw(&enc.finish());
480        Txid::from_byte_array(double.finish())
481    }
482
483    /// Computes the segwit version of the transaction id.
484    ///
485    /// Hashes the transaction **including** all segwit data (i.e. the marker,
486    /// flag bytes, and the witness fields themselves). For non-segwit
487    /// transactions which do not have any segwit data, this will be equal
488    /// to [`Transaction::txid()`].
489    pub fn wtxid(&self) -> Wtxid {
490        let mut enc = Sha256::default();
491        self.consensus_encode(&mut enc).expect("engines don't error");
492        let mut double = Sha256::default();
493        double.input_raw(&enc.finish());
494        Wtxid::from_byte_array(double.finish())
495    }
496}
497
498#[cfg(test)]
499mod test {
500    #![cfg_attr(coverage_nightly, coverage(off))]
501
502    use super::*;
503
504    #[test]
505    fn txid_byteorder() {
506        let hex = "ed9f6388c0360c1861d331a0388d5a54815dd720cc67fa783c348217a0e943ca";
507        let from_str = Txid::from_str(hex).unwrap();
508        let from_hex = Txid::from_hex(hex).unwrap();
509        assert_eq!(from_str, from_hex);
510        assert_eq!(from_str.to_string(), from_str.to_hex());
511        assert_eq!(from_str.to_string(), hex);
512        assert_eq!(format!("{from_str:x}"), hex);
513        assert_eq!(from_str[0], 0xca);
514    }
515
516    #[test]
517    fn sats() {
518        assert_eq!(Sats(0).0, 0);
519        assert_eq!(Sats(0).btc_round(), 0);
520        assert_eq!(Sats(0).btc_ceil(), 0);
521        assert_eq!(Sats(0).btc_floor(), 0);
522        assert_eq!(Sats(0).sats(), 0);
523        assert_eq!(Sats(0).sats_rem(), 0);
524
525        assert_eq!(Sats(1000).0, 1000);
526        assert_eq!(Sats(1000).btc_round(), 0);
527        assert_eq!(Sats(1000).btc_ceil(), 1);
528        assert_eq!(Sats(1000).btc_floor(), 0);
529        assert_eq!(Sats(1000).sats(), 1000);
530        assert_eq!(Sats(1000).sats_rem(), 1000);
531
532        assert_eq!(Sats(49_999_999).btc_round(), 0);
533        assert_eq!(Sats(49_999_999).btc_ceil(), 1);
534        assert_eq!(Sats(49_999_999).btc_floor(), 0);
535        assert_eq!(Sats(50_000_000).0, 50_000_000);
536        assert_eq!(Sats(50_000_000).btc_round(), 1);
537        assert_eq!(Sats(50_000_000).btc_ceil(), 1);
538        assert_eq!(Sats(50_000_000).btc_floor(), 0);
539        assert_eq!(Sats(50_000_000).sats(), 50_000_000);
540        assert_eq!(Sats(50_000_000).sats_rem(), 50_000_000);
541
542        assert_eq!(Sats(99_999_999).btc_round(), 1);
543        assert_eq!(Sats(99_999_999).btc_ceil(), 1);
544        assert_eq!(Sats(99_999_999).btc_floor(), 0);
545        assert_eq!(Sats(100_000_000), Sats::from_btc(1));
546        assert_eq!(Sats(100_000_000).0, 100_000_000);
547        assert_eq!(Sats(100_000_000).btc_round(), 1);
548        assert_eq!(Sats(100_000_000).btc_ceil(), 1);
549        assert_eq!(Sats(100_000_000).btc_floor(), 1);
550        assert_eq!(Sats(100_000_000).sats(), 100_000_000);
551        assert_eq!(Sats(100_000_000).sats_rem(), 0);
552        assert_eq!(Sats(100_000_001).sats(), 100_000_001);
553        assert_eq!(Sats(100_000_001).sats_rem(), 1);
554        assert_eq!(Sats(110_000_000).sats(), 110_000_000);
555        assert_eq!(Sats(110_000_000).sats_rem(), 10_000_000);
556    }
557
558    #[test]
559    fn nonsegwit_transaction() {
560        let tx =
561            "0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c49\
562            3046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7\
563            f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506e\
564            fdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b\
565            3839e2bbf32d826a1e222031fd888ac00000000";
566        let realtx = Tx::from_str(tx).unwrap();
567
568        assert_eq!(&realtx.to_string(), tx);
569        assert_eq!(&realtx.to_hex(), tx);
570        assert_eq!(&format!("{realtx:x}"), tx);
571
572        // All these tests aren't really needed because if they fail, the hash check at
573        // the end will also fail. But these will show you where the failure is
574        // so I'll leave them in.
575        assert_eq!(realtx.version, TxVer::V1);
576        assert_eq!(realtx.inputs.len(), 1);
577        // In particular this one is easy to get backward -- in bitcoin hashes are
578        // encoded as little-endian 256-bit numbers rather than as data strings.
579        assert_eq!(
580            format!("{:x}", realtx.inputs[0].prev_output.txid),
581            "ce9ea9f6f5e422c6a9dbcddb3b9a14d1c78fab9ab520cb281aa2a74a09575da1".to_string()
582        );
583        assert_eq!(realtx.inputs[0].prev_output.vout, Vout::from_u32(1));
584        assert_eq!(realtx.outputs.len(), 1);
585        assert_eq!(realtx.lock_time, LockTime::ZERO);
586
587        assert_eq!(
588            format!("{:x}", realtx.txid()),
589            "a6eab3c14ab5272a58a5ba91505ba1a4b6d7a3a9fcbd187b6cd99a7b6d548cb7".to_string()
590        );
591        assert_eq!(
592            format!("{:x}", realtx.wtxid()),
593            "a6eab3c14ab5272a58a5ba91505ba1a4b6d7a3a9fcbd187b6cd99a7b6d548cb7".to_string()
594        );
595        /* TODO: Enable once weight calculation is there
596        assert_eq!(realtx.weight().to_wu() as usize, tx_bytes.len() * WITNESS_SCALE_FACTOR);
597        assert_eq!(realtx.total_size(), tx_bytes.len());
598        assert_eq!(realtx.vsize(), tx_bytes.len());
599        assert_eq!(realtx.base_size(), tx_bytes.len());
600         */
601    }
602
603    #[test]
604    fn segwit_transaction() {
605        let tx =
606            "02000000000101595895ea20179de87052b4046dfe6fd515860505d6511a9004cf12a1f93cac7c01000000\
607            00ffffffff01deb807000000000017a9140f3444e271620c736808aa7b33e370bd87cb5a078702483045022\
608            100fb60dad8df4af2841adc0346638c16d0b8035f5e3f3753b88db122e70c79f9370220756e6633b17fd271\
609            0e626347d28d60b0a2d6cbb41de51740644b9fb3ba7751040121028fa937ca8cba2197a37c007176ed89410\
610            55d3bcb8627d085e94553e62f057dcc00000000";
611        let realtx = Tx::from_str(tx).unwrap();
612
613        assert_eq!(&realtx.to_string(), tx);
614        assert_eq!(&realtx.to_hex(), tx);
615        assert_eq!(&format!("{realtx:x}"), tx);
616
617        // All these tests aren't really needed because if they fail, the hash check at
618        // the end will also fail. But these will show you where the failure is
619        // so I'll leave them in.
620        assert_eq!(realtx.version, TxVer::V2);
621        assert_eq!(realtx.inputs.len(), 1);
622        // In particular this one is easy to get backward -- in bitcoin hashes are
623        // encoded as little-endian 256-bit numbers rather than as data strings.
624        assert_eq!(
625            format!("{:x}", realtx.inputs[0].prev_output.txid),
626            "7cac3cf9a112cf04901a51d605058615d56ffe6d04b45270e89d1720ea955859".to_string()
627        );
628        assert_eq!(realtx.inputs[0].prev_output.vout, Vout::from_u32(1));
629        assert_eq!(realtx.outputs.len(), 1);
630        assert_eq!(realtx.lock_time, LockTime::ZERO);
631
632        assert_eq!(
633            format!("{:x}", realtx.txid()),
634            "f5864806e3565c34d1b41e716f72609d00b55ea5eac5b924c9719a842ef42206".to_string()
635        );
636        assert_eq!(
637            format!("{:x}", realtx.wtxid()),
638            "80b7d8a82d5d5bf92905b06f2014dd699e03837ca172e3a59d51426ebbe3e7f5".to_string()
639        );
640
641        /* TODO: Enable once weight calculation is there
642        const EXPECTED_WEIGHT: Weight = Weight::from_wu(442);
643        assert_eq!(realtx.weight(), EXPECTED_WEIGHT);
644        assert_eq!(realtx.total_size(), tx_bytes.len());
645        assert_eq!(realtx.vsize(), 111);
646
647        let expected_strippedsize = (442 - realtx.total_size()) / 3;
648        assert_eq!(realtx.base_size(), expected_strippedsize);
649
650        // Construct a transaction without the witness data.
651        let mut tx_without_witness = realtx;
652        tx_without_witness.input.iter_mut().for_each(|input| input.witness.clear());
653        assert_eq!(tx_without_witness.total_size(), tx_without_witness.total_size());
654        assert_eq!(tx_without_witness.total_size(), expected_strippedsize);
655         */
656    }
657}