bc/
tx.rs

1// Bitcoin protocol consensus library.
2//
3// SPDX-License-Identifier: Apache-2.0
4//
5// Written in 2019-2024 by
6//     Dr Maxim Orlovsky <orlovsky@lnp-bp.org>
7//
8// Copyright (C) 2019-2024 LNP/BP Standards Association. All rights reserved.
9//
10// Licensed under the Apache License, Version 2.0 (the "License");
11// you may not use this file except in compliance with the License.
12// You may obtain a copy of the License at
13//
14//     http://www.apache.org/licenses/LICENSE-2.0
15//
16// Unless required by applicable law or agreed to in writing, software
17// distributed under the License is distributed on an "AS IS" BASIS,
18// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19// See the License for the specific language governing permissions and
20// limitations under the License.
21
22use core::slice;
23use std::fmt::{self, Debug, Display, Formatter, LowerHex};
24use std::iter::Sum;
25use std::num::ParseIntError;
26use std::ops::{Div, Rem};
27use std::str::FromStr;
28
29use amplify::hex::{self, FromHex, ToHex};
30use amplify::{ByteArray, Bytes32StrRev, Wrapper};
31use commit_verify::{DigestExt, Sha256};
32
33use crate::{
34    ConsensusDecode, ConsensusDecodeError, ConsensusEncode, LockTime, NonStandardValue,
35    ScriptPubkey, SeqNo, SigScript, VarIntArray, Witness, Wtxid, LIB_NAME_BITCOIN,
36};
37
38#[derive(Wrapper, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, From)]
39#[wrapper(AsSlice)]
40#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
41#[strict_type(lib = LIB_NAME_BITCOIN)]
42#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(transparent))]
43#[wrapper(BorrowSlice, Index, RangeOps, Debug, Hex, Display, FromStr)]
44// all-zeros used in coinbase
45pub struct Txid(
46    #[from]
47    #[from([u8; 32])]
48    Bytes32StrRev,
49);
50
51impl From<Txid> for [u8; 32] {
52    fn from(txid: Txid) -> Self { txid.to_byte_array() }
53}
54
55impl Txid {
56    #[inline]
57    pub const fn coinbase() -> Self { Self(Bytes32StrRev::zero()) }
58    #[inline]
59    pub fn is_coinbase(&self) -> bool { self.to_byte_array() == [0u8; 32] }
60}
61
62#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Display, From)]
63#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
64#[strict_type(lib = LIB_NAME_BITCOIN)]
65#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(transparent))]
66#[display(inner)]
67// 0xFFFFFFFF used in coinbase
68pub struct Vout(u32);
69
70impl Vout {
71    pub const fn from_u32(u: u32) -> Self { Vout(u) }
72    #[inline]
73    pub const fn into_u32(self) -> u32 { self.0 }
74    #[inline]
75    pub const fn into_usize(self) -> usize { self.0 as usize }
76    #[inline]
77    pub const fn to_u32(&self) -> u32 { self.0 }
78    #[inline]
79    pub const fn to_usize(&self) -> usize { self.0 as usize }
80}
81
82impl FromStr for Vout {
83    type Err = ParseIntError;
84
85    #[inline]
86    fn from_str(s: &str) -> Result<Self, Self::Err> { s.parse().map(Self) }
87}
88
89#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Display)]
90#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
91#[strict_type(lib = LIB_NAME_BITCOIN)]
92#[display("{txid}:{vout}")]
93pub struct Outpoint {
94    pub txid: Txid,
95    pub vout: Vout,
96}
97
98impl Outpoint {
99    #[inline]
100    pub fn new(txid: Txid, vout: impl Into<Vout>) -> Self {
101        Self {
102            txid,
103            vout: vout.into(),
104        }
105    }
106
107    #[inline]
108    pub const fn coinbase() -> Self {
109        Self {
110            txid: Txid::coinbase(),
111            vout: Vout::from_u32(0),
112        }
113    }
114
115    #[inline]
116    pub fn vout_u32(self) -> u32 { self.vout.into_u32() }
117
118    #[inline]
119    pub fn vout_usize(self) -> usize { self.vout.into_usize() }
120
121    #[inline]
122    pub fn is_coinbase(&self) -> bool { self.txid.is_coinbase() && self.vout.into_u32() == 0 }
123}
124
125#[derive(Clone, Eq, PartialEq, Debug, Display, From, Error)]
126#[display(doc_comments)]
127pub enum OutpointParseError {
128    /// malformed string representation of outoint '{0}' lacking txid and vout
129    /// separator ':'
130    MalformedSeparator(String),
131
132    /// malformed outpoint output number. Details: {0}
133    #[from]
134    InvalidVout(ParseIntError),
135
136    /// malformed outpoint txid value. Details: {0}
137    #[from]
138    InvalidTxid(hex::Error),
139}
140
141impl FromStr for Outpoint {
142    type Err = OutpointParseError;
143
144    fn from_str(s: &str) -> Result<Self, Self::Err> {
145        let (txid, vout) = s
146            .split_once(':')
147            .ok_or_else(|| OutpointParseError::MalformedSeparator(s.to_owned()))?;
148        Ok(Outpoint::new(txid.parse()?, Vout::from_str(vout)?))
149    }
150}
151
152#[cfg(feature = "serde")]
153mod _serde_outpoint {
154    use serde::de::{SeqAccess, Visitor};
155    use serde::ser::SerializeTuple;
156    use serde::{Deserialize, Deserializer, Serialize, Serializer};
157
158    use super::*;
159
160    impl Serialize for Outpoint {
161        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
162        where S: Serializer {
163            if serializer.is_human_readable() {
164                serializer.serialize_str(&self.to_string())
165            } else {
166                let mut ser = serializer.serialize_tuple(2)?;
167                ser.serialize_element(&self.txid)?;
168                ser.serialize_element(&self.vout)?;
169                ser.end()
170            }
171        }
172    }
173
174    impl<'de> Deserialize<'de> for Outpoint {
175        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
176        where D: Deserializer<'de> {
177            use serde::de::Error;
178            if deserializer.is_human_readable() {
179                String::deserialize(deserializer).and_then(|string| {
180                    Self::from_str(&string)
181                        .map_err(|_| D::Error::custom("wrong outpoint string representation"))
182                })
183            } else {
184                struct OutpointVisitor;
185
186                impl<'de> Visitor<'de> for OutpointVisitor {
187                    type Value = Outpoint;
188
189                    fn expecting(&self, formatter: &mut Formatter) -> fmt::Result {
190                        write!(formatter, "a transaction outpoint")
191                    }
192
193                    fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
194                    where A: SeqAccess<'de> {
195                        let mut outpoint = Outpoint::coinbase();
196                        outpoint.txid =
197                            seq.next_element()?.ok_or_else(|| Error::invalid_length(0, &self))?;
198                        outpoint.vout =
199                            seq.next_element()?.ok_or_else(|| Error::invalid_length(1, &self))?;
200                        Ok(outpoint)
201                    }
202                }
203
204                deserializer.deserialize_tuple(2, OutpointVisitor)
205            }
206        }
207    }
208}
209
210#[derive(Clone, Eq, PartialEq, Hash, Debug)]
211#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
212#[strict_type(lib = LIB_NAME_BITCOIN)]
213#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(rename_all = "camelCase"))]
214pub struct TxIn {
215    pub prev_output: Outpoint,
216    pub sig_script: SigScript,
217    pub sequence: SeqNo,
218    pub witness: Witness,
219}
220
221#[derive(
222    Wrapper, WrapperMut, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, From, Default
223)]
224#[wrapper(Add, Sub, Mul, Div, FromStr)]
225#[wrapper_mut(MathAssign)]
226#[derive(StrictType, StrictEncode, StrictDecode)]
227#[strict_type(lib = LIB_NAME_BITCOIN)]
228#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(transparent))]
229pub struct Sats(
230    #[from]
231    #[from(u32)]
232    #[from(u16)]
233    #[from(u8)]
234    pub u64,
235);
236
237impl Sats {
238    pub const ZERO: Self = Sats(0);
239    #[allow(clippy::inconsistent_digit_grouping)]
240    pub const BTC: Self = Sats(1_000_000_00);
241
242    pub const fn from_btc(btc: u32) -> Self { Self(btc as u64 * Self::BTC.0) }
243    pub fn from_sats(sats: impl Into<u64>) -> Self { Self(sats.into()) }
244
245    pub const fn is_zero(&self) -> bool { self.0 == 0 }
246    pub const fn is_non_zero(&self) -> bool { self.0 != 0 }
247
248    pub const fn btc_round(&self) -> u64 {
249        if self.0 == 0 {
250            return 0;
251        }
252        let inc = 2 * self.sats_rem() / Self::BTC.0;
253        self.0 / Self::BTC.0 + inc
254    }
255
256    pub const fn btc_ceil(&self) -> u64 {
257        if self.0 == 0 {
258            return 0;
259        }
260        let inc = if self.sats_rem() > 0 { 1 } else { 0 };
261        self.0 / Self::BTC.0 + inc
262    }
263
264    pub const fn btc_floor(&self) -> u64 {
265        if self.0 == 0 {
266            return 0;
267        }
268        self.0 / Self::BTC.0
269    }
270
271    pub const fn sats(&self) -> u64 { self.0 }
272
273    pub fn sats_i64(&self) -> i64 {
274        i64::try_from(self.0).expect("amount of sats exceeds total bitcoin supply")
275    }
276
277    pub const fn sats_rem(&self) -> u64 { self.0 % Self::BTC.0 }
278
279    pub const fn btc_sats(&self) -> (u64, u64) { (self.btc_floor(), self.sats_rem()) }
280
281    #[must_use]
282    pub fn checked_add(&self, other: impl Into<Self>) -> Option<Self> {
283        self.0.checked_add(other.into().0).map(Self)
284    }
285    #[must_use]
286    pub fn checked_sub(&self, other: impl Into<Self>) -> Option<Self> {
287        self.0.checked_sub(other.into().0).map(Self)
288    }
289
290    #[must_use]
291    pub fn checked_add_assign(&mut self, other: impl Into<Self>) -> Option<Self> {
292        *self = Self(self.0.checked_add(other.into().0)?);
293        Some(*self)
294    }
295
296    #[must_use]
297    pub fn checked_sub_assign(&mut self, other: impl Into<Self>) -> Option<Self> {
298        *self = Self(self.0.checked_sub(other.into().0)?);
299        Some(*self)
300    }
301
302    #[must_use]
303    pub fn saturating_add(&self, other: impl Into<Self>) -> Self {
304        self.0.saturating_add(other.into().0).into()
305    }
306
307    #[must_use]
308    pub fn saturating_sub(&self, other: impl Into<Self>) -> Self {
309        self.0.saturating_sub(other.into().0).into()
310    }
311
312    pub fn saturating_add_assign(&mut self, other: impl Into<Self>) {
313        *self = self.0.saturating_add(other.into().0).into();
314    }
315    pub fn saturating_sub_assign(&mut self, other: impl Into<Self>) {
316        *self = self.0.saturating_sub(other.into().0).into();
317    }
318}
319
320impl PartialEq<u64> for Sats {
321    fn eq(&self, other: &u64) -> bool { self.0.eq(other) }
322}
323
324impl Sum for Sats {
325    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
326        iter.fold(Sats::ZERO, |sum, value| sum.saturating_add(value))
327    }
328}
329
330impl Sum<u64> for Sats {
331    fn sum<I: Iterator<Item = u64>>(iter: I) -> Self {
332        iter.fold(Sats::ZERO, |sum, value| sum.saturating_add(value))
333    }
334}
335
336impl Div<usize> for Sats {
337    type Output = Sats;
338    fn div(self, rhs: usize) -> Self::Output { Sats(self.0 / rhs as u64) }
339}
340
341impl Rem<usize> for Sats {
342    type Output = Sats;
343    fn rem(self, rhs: usize) -> Self::Output { Sats(self.0 % rhs as u64) }
344}
345
346impl Display for Sats {
347    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { Display::fmt(&self.0, f) }
348}
349
350#[derive(Clone, Eq, PartialEq, Hash, Debug, Default)]
351#[derive(StrictType, StrictEncode, StrictDecode)]
352#[strict_type(lib = LIB_NAME_BITCOIN)]
353#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(rename_all = "camelCase"))]
354pub struct TxOut {
355    pub value: Sats,
356    pub script_pubkey: ScriptPubkey,
357}
358
359impl TxOut {
360    pub fn new(script_pubkey: impl Into<ScriptPubkey>, value: impl Into<Sats>) -> Self {
361        TxOut {
362            script_pubkey: script_pubkey.into(),
363            value: value.into(),
364        }
365    }
366}
367
368#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)]
369#[derive(StrictType, StrictEncode, StrictDecode)]
370#[strict_type(lib = LIB_NAME_BITCOIN)]
371#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
372pub struct TxVer(i32);
373
374impl Default for TxVer {
375    fn default() -> Self { TxVer(2) }
376}
377
378impl TxVer {
379    /// Pre-BIP68 version.
380    pub const V1: Self = TxVer(1);
381    /// Current version (post-BIP68).
382    pub const V2: Self = TxVer(2);
383
384    #[inline]
385    pub const fn from_consensus_i32(ver: i32) -> Self { TxVer(ver) }
386
387    pub const fn try_from_standard(ver: i32) -> Result<Self, NonStandardValue<i32>> {
388        let ver = TxVer::from_consensus_i32(ver);
389        if !ver.is_standard() {
390            Err(NonStandardValue::with(ver.0, "TxVer"))
391        } else {
392            Ok(ver)
393        }
394    }
395
396    #[inline]
397    pub const fn is_standard(self) -> bool { self.0 <= TxVer::V2.0 }
398
399    #[inline]
400    pub const fn to_consensus_i32(&self) -> i32 { self.0 }
401}
402
403#[derive(Clone, Eq, PartialEq, Hash, Debug, Display)]
404#[derive(StrictType, StrictDumb, StrictEncode, StrictDecode)]
405#[strict_type(lib = LIB_NAME_BITCOIN)]
406#[cfg_attr(feature = "serde", derive(Serialize, Deserialize), serde(rename_all = "camelCase"))]
407#[display(LowerHex)]
408pub struct Tx {
409    pub version: TxVer,
410    pub inputs: VarIntArray<TxIn>,
411    pub outputs: VarIntArray<TxOut>,
412    pub lock_time: LockTime,
413}
414
415impl LowerHex for Tx {
416    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
417        f.write_str(&self.consensus_serialize().to_hex())
418    }
419}
420
421#[derive(Clone, PartialEq, Eq, Debug, Display, Error, From)]
422#[display(inner)]
423pub enum BlockDataParseError {
424    #[from]
425    Hex(hex::Error),
426    #[from]
427    Consensus(ConsensusDecodeError),
428}
429
430impl FromStr for Tx {
431    type Err = BlockDataParseError;
432
433    fn from_str(s: &str) -> Result<Self, Self::Err> {
434        let data = Vec::<u8>::from_hex(s)?;
435        Tx::consensus_deserialize(data).map_err(BlockDataParseError::from)
436    }
437}
438
439impl Tx {
440    #[inline]
441    pub fn inputs(&self) -> slice::Iter<TxIn> { self.inputs.iter() }
442
443    #[inline]
444    pub fn outputs(&self) -> slice::Iter<TxOut> { self.outputs.iter() }
445
446    #[inline]
447    pub fn is_segwit(&self) -> bool { self.inputs().any(|txin| !txin.witness.is_empty()) }
448
449    #[inline]
450    pub fn to_unsigned_tx(&self) -> Tx {
451        let mut tx = self.clone();
452        for input in &mut tx.inputs {
453            input.sig_script = SigScript::empty();
454            input.witness = empty!();
455        }
456        tx
457    }
458
459    /// Computes a "normalized TXID" which does not include any signatures.
460    ///
461    /// This gives a way to identify a transaction that is "the same" as
462    /// another in the sense of having same inputs and outputs.
463    pub fn ntxid(&self) -> [u8; 32] { self.to_unsigned_tx().txid().to_byte_array() }
464
465    /// Computes the [`Txid`].
466    ///
467    /// Hashes the transaction **excluding** the segwit data (i.e. the marker,
468    /// flag bytes, and the witness fields themselves). For non-segwit
469    /// transactions which do not have any segwit data, this will be equal
470    /// to [`Tx::wtxid()`].
471    pub fn txid(&self) -> Txid {
472        let mut enc = Sha256::default();
473        self.version.consensus_encode(&mut enc).expect("engines don't error");
474        self.inputs.consensus_encode(&mut enc).expect("engines don't error");
475        self.outputs.consensus_encode(&mut enc).expect("engines don't error");
476        self.lock_time.consensus_encode(&mut enc).expect("engines don't error");
477        let mut double = Sha256::default();
478        double.input_raw(&enc.finish());
479        Txid::from_byte_array(double.finish())
480    }
481
482    /// Computes the segwit version of the transaction id.
483    ///
484    /// Hashes the transaction **including** all segwit data (i.e. the marker,
485    /// flag bytes, and the witness fields themselves). For non-segwit
486    /// transactions which do not have any segwit data, this will be equal
487    /// to [`Transaction::txid()`].
488    pub fn wtxid(&self) -> Wtxid {
489        let mut enc = Sha256::default();
490        self.consensus_encode(&mut enc).expect("engines don't error");
491        let mut double = Sha256::default();
492        double.input_raw(&enc.finish());
493        Wtxid::from_byte_array(double.finish())
494    }
495}
496
497#[cfg(test)]
498mod test {
499    #![cfg_attr(coverage_nightly, coverage(off))]
500
501    use super::*;
502
503    #[test]
504    fn txid_byteorder() {
505        let hex = "ed9f6388c0360c1861d331a0388d5a54815dd720cc67fa783c348217a0e943ca";
506        let from_str = Txid::from_str(hex).unwrap();
507        let from_hex = Txid::from_hex(hex).unwrap();
508        assert_eq!(from_str, from_hex);
509        assert_eq!(from_str.to_string(), from_str.to_hex());
510        assert_eq!(from_str.to_string(), hex);
511        assert_eq!(format!("{from_str:x}"), hex);
512        assert_eq!(from_str[0], 0xca);
513    }
514
515    #[test]
516    fn sats() {
517        assert_eq!(Sats(0).0, 0);
518        assert_eq!(Sats(0).btc_round(), 0);
519        assert_eq!(Sats(0).btc_ceil(), 0);
520        assert_eq!(Sats(0).btc_floor(), 0);
521        assert_eq!(Sats(0).sats(), 0);
522        assert_eq!(Sats(0).sats_rem(), 0);
523
524        assert_eq!(Sats(1000).0, 1000);
525        assert_eq!(Sats(1000).btc_round(), 0);
526        assert_eq!(Sats(1000).btc_ceil(), 1);
527        assert_eq!(Sats(1000).btc_floor(), 0);
528        assert_eq!(Sats(1000).sats(), 1000);
529        assert_eq!(Sats(1000).sats_rem(), 1000);
530
531        assert_eq!(Sats(49_999_999).btc_round(), 0);
532        assert_eq!(Sats(49_999_999).btc_ceil(), 1);
533        assert_eq!(Sats(49_999_999).btc_floor(), 0);
534        assert_eq!(Sats(50_000_000).0, 50_000_000);
535        assert_eq!(Sats(50_000_000).btc_round(), 1);
536        assert_eq!(Sats(50_000_000).btc_ceil(), 1);
537        assert_eq!(Sats(50_000_000).btc_floor(), 0);
538        assert_eq!(Sats(50_000_000).sats(), 50_000_000);
539        assert_eq!(Sats(50_000_000).sats_rem(), 50_000_000);
540
541        assert_eq!(Sats(99_999_999).btc_round(), 1);
542        assert_eq!(Sats(99_999_999).btc_ceil(), 1);
543        assert_eq!(Sats(99_999_999).btc_floor(), 0);
544        assert_eq!(Sats(100_000_000), Sats::from_btc(1));
545        assert_eq!(Sats(100_000_000).0, 100_000_000);
546        assert_eq!(Sats(100_000_000).btc_round(), 1);
547        assert_eq!(Sats(100_000_000).btc_ceil(), 1);
548        assert_eq!(Sats(100_000_000).btc_floor(), 1);
549        assert_eq!(Sats(100_000_000).sats(), 100_000_000);
550        assert_eq!(Sats(100_000_000).sats_rem(), 0);
551        assert_eq!(Sats(100_000_001).sats(), 100_000_001);
552        assert_eq!(Sats(100_000_001).sats_rem(), 1);
553        assert_eq!(Sats(110_000_000).sats(), 110_000_000);
554        assert_eq!(Sats(110_000_000).sats_rem(), 10_000_000);
555    }
556
557    #[test]
558    fn nonsegwit_transaction() {
559        let tx =
560            "0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c49\
561            3046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7\
562            f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506e\
563            fdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b\
564            3839e2bbf32d826a1e222031fd888ac00000000";
565        let realtx = Tx::from_str(tx).unwrap();
566
567        assert_eq!(&realtx.to_string(), tx);
568        assert_eq!(&realtx.to_hex(), tx);
569        assert_eq!(&format!("{realtx:x}"), tx);
570
571        // All these tests aren't really needed because if they fail, the hash check at
572        // the end will also fail. But these will show you where the failure is
573        // so I'll leave them in.
574        assert_eq!(realtx.version, TxVer::V1);
575        assert_eq!(realtx.inputs.len(), 1);
576        // In particular this one is easy to get backward -- in bitcoin hashes are
577        // encoded as little-endian 256-bit numbers rather than as data strings.
578        assert_eq!(
579            format!("{:x}", realtx.inputs[0].prev_output.txid),
580            "ce9ea9f6f5e422c6a9dbcddb3b9a14d1c78fab9ab520cb281aa2a74a09575da1".to_string()
581        );
582        assert_eq!(realtx.inputs[0].prev_output.vout, Vout::from_u32(1));
583        assert_eq!(realtx.outputs.len(), 1);
584        assert_eq!(realtx.lock_time, LockTime::ZERO);
585
586        assert_eq!(
587            format!("{:x}", realtx.txid()),
588            "a6eab3c14ab5272a58a5ba91505ba1a4b6d7a3a9fcbd187b6cd99a7b6d548cb7".to_string()
589        );
590        assert_eq!(
591            format!("{:x}", realtx.wtxid()),
592            "a6eab3c14ab5272a58a5ba91505ba1a4b6d7a3a9fcbd187b6cd99a7b6d548cb7".to_string()
593        );
594        /* TODO: Enable once weight calculation is there
595        assert_eq!(realtx.weight().to_wu() as usize, tx_bytes.len() * WITNESS_SCALE_FACTOR);
596        assert_eq!(realtx.total_size(), tx_bytes.len());
597        assert_eq!(realtx.vsize(), tx_bytes.len());
598        assert_eq!(realtx.base_size(), tx_bytes.len());
599         */
600    }
601
602    #[test]
603    fn segwit_transaction() {
604        let tx =
605            "02000000000101595895ea20179de87052b4046dfe6fd515860505d6511a9004cf12a1f93cac7c01000000\
606            00ffffffff01deb807000000000017a9140f3444e271620c736808aa7b33e370bd87cb5a078702483045022\
607            100fb60dad8df4af2841adc0346638c16d0b8035f5e3f3753b88db122e70c79f9370220756e6633b17fd271\
608            0e626347d28d60b0a2d6cbb41de51740644b9fb3ba7751040121028fa937ca8cba2197a37c007176ed89410\
609            55d3bcb8627d085e94553e62f057dcc00000000";
610        let realtx = Tx::from_str(tx).unwrap();
611
612        assert_eq!(&realtx.to_string(), tx);
613        assert_eq!(&realtx.to_hex(), tx);
614        assert_eq!(&format!("{realtx:x}"), tx);
615
616        // All these tests aren't really needed because if they fail, the hash check at
617        // the end will also fail. But these will show you where the failure is
618        // so I'll leave them in.
619        assert_eq!(realtx.version, TxVer::V2);
620        assert_eq!(realtx.inputs.len(), 1);
621        // In particular this one is easy to get backward -- in bitcoin hashes are
622        // encoded as little-endian 256-bit numbers rather than as data strings.
623        assert_eq!(
624            format!("{:x}", realtx.inputs[0].prev_output.txid),
625            "7cac3cf9a112cf04901a51d605058615d56ffe6d04b45270e89d1720ea955859".to_string()
626        );
627        assert_eq!(realtx.inputs[0].prev_output.vout, Vout::from_u32(1));
628        assert_eq!(realtx.outputs.len(), 1);
629        assert_eq!(realtx.lock_time, LockTime::ZERO);
630
631        assert_eq!(
632            format!("{:x}", realtx.txid()),
633            "f5864806e3565c34d1b41e716f72609d00b55ea5eac5b924c9719a842ef42206".to_string()
634        );
635        assert_eq!(
636            format!("{:x}", realtx.wtxid()),
637            "80b7d8a82d5d5bf92905b06f2014dd699e03837ca172e3a59d51426ebbe3e7f5".to_string()
638        );
639
640        /* TODO: Enable once weight calculation is there
641        const EXPECTED_WEIGHT: Weight = Weight::from_wu(442);
642        assert_eq!(realtx.weight(), EXPECTED_WEIGHT);
643        assert_eq!(realtx.total_size(), tx_bytes.len());
644        assert_eq!(realtx.vsize(), 111);
645
646        let expected_strippedsize = (442 - realtx.total_size()) / 3;
647        assert_eq!(realtx.base_size(), expected_strippedsize);
648
649        // Construct a transaction without the witness data.
650        let mut tx_without_witness = realtx;
651        tx_without_witness.input.iter_mut().for_each(|input| input.witness.clear());
652        assert_eq!(tx_without_witness.total_size(), tx_without_witness.total_size());
653        assert_eq!(tx_without_witness.total_size(), expected_strippedsize);
654         */
655    }
656}