1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/// The `register!` macro generates the code necessary for ergonomic register
/// access and manipulation. It is the crux of this crate. The expected input
/// for the macro is as follows:
/// 1. The register name.
/// 2. Its mode, either `RO` (read only), `RW` (read write), or `WO` (write
///    only).
/// 3. The register's fields, beginning with `Fields [`, and then a
///    closing `]` at the end.
///
/// A field constists of its name, its width, and its offset within the
/// register. Optionally, one may also state enum-like key/value pairs for the
/// values of the field, nested within the field declaration with `[]`'s
///
/// The code which this macro generates is a tree of nested modules where the
/// root is a module called `$register_name`. Within `$register_name`, there
/// will be the register itself, as `$register_name::Register`, as well as a
/// child module for each field.
///
/// Within each field module, one can find the field itself, as
/// `$register_name::$field_name::Field`, as well as a few helpful aliases and
/// constants.
///
/// * `$register_name::$field_name::Read`: In order to read a field, an instance
///   of that field must be given to have access to its mask and offset. `Read`
///   can be used as an argument to `get_field` so one does not have to
///   construct an arbitrary one when doing a read.
/// * `$register_name::$field_name::Clear`: A field whose value is zero. Passing
///   it to `modify` will clear that field in the register.
/// * `$register_name::$field_name::Set`: A field whose value is `$field_max`.
///   Passing it to `modify` will set that field to its max value in the
///   register. This is useful particularly in the case of single-bit wide
///   fields.
/// * `$register_name::$field_name::$enum_kvs`: constants mapping the enum like
///   field names to values.
///
/// An example register and its use is below:
/// ```
/// #[macro_use]
/// extern crate typenum;
/// #[macro_use]
/// extern crate bounded_registers;
///
/// use typenum::consts::U1;
///
/// register! {
///     Status,
///     u8,
///     RW,
///     Fields [
///         On WIDTH(U1) OFFSET(U0),
///         Dead WIDTH(U1) OFFSET(U1),
///         Color WIDTH(U3) OFFSET(U2) [
///             Red = U1,
///             Blue = U2,
///             Green = U3,
///             Yellow = U4
///         ]
///     ]
/// }
///
/// fn main() {
///     let mut reg = Status::Register::new(0);
///     reg.modify(Status::Dead::Field::checked::<U1>());
///     assert_eq!(reg.read(), 2);
/// }
/// ```
#[macro_export]
macro_rules! register {
    {
        $(#[$attrs:meta])*
        $name:ident,
        $width:ty,
        $mode:ident,
        Fields [$($fields:tt)*]
    } => {
        #[allow(unused)]
        #[allow(non_snake_case)]
        pub mod $name {
            use typenum::consts::*;
            use core::marker::PhantomData;
            use typenum::{Unsigned, IsGreater};
            use $crate::{Field as F, Pointer, Positioned};

            use $crate::bounds::{ReifyTo, Reifier};

            use core::ptr;

            type Width = $width;

            #[repr(C)]
            $(#[$attrs])*
            pub struct Register(Width);

            mode!($mode);

            fields!($($fields)*);

        }
    }
}

#[macro_export]
#[doc(hidden)]
macro_rules! fields {
    {
        $(#[$outer:meta])*
        $name:ident WIDTH($width:ident) OFFSET($offset:ident) [ $($enums:tt)* ] $($rest:tt)*
    } => {
        #[allow(unused)]
        #[allow(non_upper_case_globals)]
        #[allow(non_snake_case)]
        pub mod $name {

            use super::*;

            type _Offset = $offset;
            type _FieldWidth = $width;

            $(#[$outer])*
            pub type Field = F<super::Width, op!(((U1 << $width) - U1) << $offset), $offset, op!((U1 << $width) - U1), Register>;

            /// In order to read a field, an instance of that field
            /// must be given to have access to its mask and
            /// offset. `Read` can be used as an argument to
            /// `get_field` so one does not have to construct an
            /// arbitrary one when doing a read.
            pub const Read: Field = Field::checked::<U0>();


            /// A field whose value is `$field_max`. Passing it to
            /// `modify` will set that field to its max value in the
            /// register. This is useful particularly in the case of
            /// single-bit wide fields.
            pub const Set: Field = Field::checked::<op!((U1 << $width) - U1)>();

            /// A field whose value is zero. Passing it to `modify`
            /// will clear that field in the register.
            pub const Clear: Field = Read;

            /// Constants mapping the enum-like field names to values.
            enums!($($enums)*);
        }

        fields!($($rest)*);
    };
    {
        $(#[$outer:meta])*
        $name:ident WIDTH($width:ident) OFFSET($offset:ident) $($rest:tt)*
    } => {
        #[allow(unused)]
        #[allow(non_upper_case_globals)]
        #[allow(non_snake_case)]
        pub mod $name {

            use super::*;

            $(#[$outer])*
            pub type Field = F<super::Width, op!(((U1 << $width) - U1) << $offset), $offset, op!((U1 << $width) - U1), Register>;

            /// In order to read a field, an instance of that field
            /// must be given to have access to its mask and
            /// offset. `Read` can be used as an argument to
            /// `get_field` so one does not have to construct an
            /// arbitrary one when doing a read.
            pub const Read: Field = Field::checked::<U0>();

            /// A field whose value is `$field_max`. Passing it to
            /// `modify` will set that field to its max value in the
            /// register. This is useful particularly in the case of
            /// single-bit wide fields.
            pub const Set: Field = Field::checked::<op!((U1 << $width) - U1)>();

            /// A field whose value is zero. Passing it to `modify`
            /// will clear that field in the register.
            pub const Clear: Field = Read;
        }

        fields!($($rest)*);
    };
    (, $($rest:tt)*) => (fields!($($rest)*););
    () => ()
}

#[macro_export]
#[doc(hidden)]
macro_rules! enums {
    {
        $(

            $(#[$outer:meta])*
            $name:ident = $val:ident
        ),*
    } => {
        $(
            $(#[$outer])*
            pub const $name: Field = Field::checked::<$val>();
        )*
    }
}

#[macro_export]
#[doc(hidden)]
macro_rules! mode {
    (RO) => {
        impl Register {
            /// `new` constructs a read-only register around the given
            /// value.
            pub fn new(init: Width) -> Self {
                Register(init)
            }

            /// `get_field` takes a field and sets the value of that
            /// field to its value in the register.
            pub fn get_field<M: Unsigned, O: Unsigned, U: Unsigned>(
                &self,
                f: F<Width, M, O, U, Register>,
            ) -> Option<F<Width, M, O, U, Register>>
            where
                U: IsGreater<U0, Output = True> + ReifyTo<Width>,
                M: ReifyTo<Width>,
                O: ReifyTo<Width>,
                U0: ReifyTo<Width>,
            {
                f.set(
                    (unsafe { ptr::read_volatile(&self.0 as *const Width) } & M::reify())
                        >> O::reify(),
                )
            }

            /// `read` returns the current state of the register as a `Width`.
            pub fn read(&self) -> Width {
                unsafe { ptr::read_volatile(&self.0 as *const Width) }
            }

            /// `extract` pulls the state of a register out into a wrapped
            /// read-only register.
            pub fn extract(&self) -> $crate::ReadOnlyCopy<Width, Register> {
                $crate::ReadOnlyCopy(
                    unsafe { ptr::read_volatile(&self.0 as *const Width) },
                    PhantomData,
                )
            }

            /// `is_set` takes a field and returns true if that field's value
            /// is equal to its upper bound or not. This is of particular use
            /// in single-bit fields.
            pub fn is_set<M: Unsigned, O: Unsigned, U: Unsigned>(
                &self,
                f: F<Width, M, O, U, Register>,
            ) -> bool
            where
                U: IsGreater<U0, Output = True>,
                U: ReifyTo<Width>,
                M: ReifyTo<Width>,
                O: ReifyTo<Width>,
            {
                ((unsafe { ptr::read_volatile(&self.0 as *const Width) } & M::reify())
                    >> O::reify())
                    == U::reify()
            }

            /// `matches_any` returns whether or not any of the given fields
            /// match those fields values inside the register.
            pub fn matches_any<V: Positioned<Width = Width>>(&self, val: V) -> bool {
                (val.in_position() & unsafe { ptr::read_volatile(&self.0 as *const Width) }) != 0
            }

            /// `matches_all` returns whether or not all of the given fields
            /// match those fields values inside the register.
            fn matches_all<V: Positioned<Width = Width>>(&self, val: V) -> bool {
                (val.in_position() & unsafe { ptr::read_volatile(&self.0 as *const Width) })
                    == val.in_position()
            }
        }
    };
    (WO) => {
        impl Register {
            /// `new` constructs a write-only register around the
            /// given pointer.
            pub fn new(init: Width) -> Self {
                Register(init)
            }

            /// `modify` takes one or more fields, joined by `+`, and
            /// sets those fields in the register, leaving the others
            /// as they were.
            pub fn modify<V: Positioned<Width = Width>>(&mut self, val: V) {
                unsafe {
                    ptr::write_volatile(
                        &mut self.0 as *mut Width,
                        (ptr::read_volatile(&self.0 as *const Width) & !val.mask())
                            | val.in_position(),
                    );
                };
            }

            /// `write` sets the value of the whole register to the
            /// given `Width` value.
            fn write(&mut self, val: Width) {
                unsafe { ptr::write_volatile(&mut self.0 as *mut Width, val) };
            }
        }
    };
    (RW) => {
        impl Register {
            /// `new` constructs a read-write register around the
            /// given pointer.
            pub fn new(init: Width) -> Self {
                Register(init)
            }

            /// `get_field` takes a field and sets the value of that
            /// field to its value in the register.
            pub fn get_field<M: Unsigned, O: Unsigned, U: Unsigned>(
                &self,
                f: F<Width, M, O, U, Register>,
            ) -> Option<F<Width, M, O, U, Register>>
            where
                U: IsGreater<U0, Output = True> + ReifyTo<Width>,
                M: ReifyTo<Width>,
                O: ReifyTo<Width>,
                U0: ReifyTo<Width>,
            {
                f.set(
                    (unsafe { ptr::read_volatile(&self.0 as *const Width) } & M::reify())
                        >> O::reify(),
                )
            }

            /// `read` returns the current state of the register as a `Width`.
            pub fn read(&self) -> Width {
                unsafe { ptr::read_volatile(&self.0 as *const Width) }
            }

            /// `extract` pulls the state of a register out into a wrapped
            /// read-only register.
            pub fn extract(&self) -> $crate::ReadOnlyCopy<Width, Register> {
                $crate::ReadOnlyCopy(
                    unsafe { ptr::read_volatile(&self.0 as *const Width) },
                    PhantomData,
                )
            }

            /// `is_set` takes a field and returns true if that field's value
            /// is equal to its upper bound or not. This is of particular use
            /// in single-bit fields.
            pub fn is_set<M: Unsigned, O: Unsigned, U: Unsigned>(
                &self,
                f: F<Width, M, O, U, Register>,
            ) -> bool
            where
                U: IsGreater<U0, Output = True>,
                U: ReifyTo<Width>,
                M: ReifyTo<Width>,
                O: ReifyTo<Width>,
            {
                ((unsafe { ptr::read_volatile(&self.0 as *const Width) } & M::reify())
                    >> O::reify())
                    == U::reify()
            }

            /// `matches_any` returns whether or not any of the given fields
            /// match those fields values inside the register.
            pub fn matches_any<V: Positioned<Width = Width>>(&self, val: V) -> bool {
                (val.in_position() & unsafe { ptr::read_volatile(&self.0 as *const Width) }) != 0
            }

            /// `matches_all` returns whether or not all of the given fields
            /// match those fields values inside the register.
            pub fn matches_all<V: Positioned<Width = Width>>(&self, val: V) -> bool {
                (val.in_position() & unsafe { ptr::read_volatile(&self.0 as *const Width) })
                    == val.in_position()
            }

            /// `modify` takes one or more fields, joined by `+`, and
            /// sets those fields in the register, leaving the others
            /// as they were.
            pub fn modify<V: Positioned<Width = Width>>(&mut self, val: V) {
                unsafe {
                    ptr::write_volatile(
                        &mut self.0 as *mut Width,
                        (ptr::read_volatile(&self.0 as *const Width) & !val.mask())
                            | val.in_position(),
                    );
                };
            }

            /// `write` sets the value of the whole register to the
            /// given `Width` value.
            pub fn write(&mut self, val: Width) {
                unsafe { ptr::write_volatile(&mut self.0 as *mut Width, val) };
            }
        }
    };
}

#[cfg(test)]
mod test {
    use typenum::consts::U1;

    register! {
        /// The status register
        #[derive(Debug)]
        Status,
        u8,
        RW,
        Fields [
            /// Here I'm just testing that doc comments work.
            On WIDTH(U1) OFFSET(U0),
            Dead WIDTH(U1) OFFSET(U1),
            Color WIDTH(U3) OFFSET(U2) [
                /// In here too!
                // Even with a bunch of lines.
                Red = U1,
                Blue = U2,
                Green = U3,
                Yellow = U4
            ],
        ]
    }

    #[test]
    fn test_rw_macro() {
        let mut reg = Status::Register::new(0);
        reg.modify(Status::Dead::Field::checked::<U1>());
        assert_eq!(reg.read(), 2);
    }

    #[test]
    fn test_matches_any() {
        let mut reg = Status::Register::new(0);
        reg.modify(Status::Dead::Set);
        assert!(reg.matches_any(Status::On::Set + Status::Dead::Set));
        reg.modify(Status::Dead::Clear);
        assert!(!reg.matches_any(Status::On::Set + Status::Dead::Set));
    }

    #[test]
    fn test_matches_all() {
        let mut reg = Status::Register::new(0);
        reg.modify(Status::Dead::Set + Status::On::Set);
        assert!(reg.matches_all(Status::On::Set + Status::Dead::Set));
        reg.modify(Status::Dead::Clear);
        assert!(!reg.matches_all(Status::On::Set + Status::Dead::Set));
    }

    register! {
        ///  A random number generator
        #[derive(Debug)]
        RNG,
        u8,
        RO,
        Fields [
            /// This field means the RNG is working on generating a
            /// random number.
            Working WIDTH(U1) OFFSET(U0),
            NumWidth WIDTH(U2) OFFSET(U1) [
                Four = U0,
                Eight = U1,
                Sixteen = U2
            ]
        ]
    }

    #[test]
    fn test_ro_macro() {
        let reg = RNG::Register::new(4);
        let width = reg.get_field(RNG::NumWidth::Read).unwrap();
        assert_eq!(width, RNG::NumWidth::Sixteen);
    }

    #[test]
    fn test_field_disj() {
        let mut reg = Status::Register::new(0);
        reg.modify(Status::Dead::Set + Status::Color::Blue + Status::On::Clear);
        assert_eq!(reg.read(), 10);
    }
}