1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
//! This crate provides two types of bounded integer. //! //! # Macro-generated bounded integers //! //! The [`bounded_integer!`] macro allows you to define your own bounded integer type, given a //! specific range it inhabits. For example: //! //! ```rust #![cfg_attr(not(feature = "macro"), doc = "# #[cfg(any())] {")] #![cfg_attr(feature = "step_trait", doc = "# #![feature(step_trait)]")] //! # use bounded_integer::bounded_integer; //! bounded_integer! { //! struct MyInteger { 0..8 } //! } //! let num = MyInteger::new(5).unwrap(); //! assert_eq!(num, 5); #![cfg_attr(not(feature = "macro"), doc = "# }")] //! ``` //! //! This macro supports both `struct`s and `enum`s. See the [`examples`] module for the //! documentation of generated types. //! //! # Const generics-based bounded integers //! //! You can also create ad-hoc bounded integers via types in this library that use const generics, //! for example: //! //! ```rust #![cfg_attr(feature = "step_trait", doc = "# #![feature(step_trait)]")] #![cfg_attr(not(feature = "types"), doc = "# #[cfg(any())] {")] //! # use bounded_integer::BoundedU8; //! let num = <BoundedU8<0, 7>>::new(5).unwrap(); //! assert_eq!(num, 5); #![cfg_attr(not(feature = "types"), doc = "# }")] //! ``` //! //! These integers are shorter to use as they don't require a type declaration or explicit name, //! and they interoperate better with other integers that have different ranges. However due to the //! limits of const generics, they do not implement some traits like `Default`. //! //! # `no_std` //! //! All the integers in this crate depend only on libcore and so work in `#![no_std]` environments. //! //! # Crate Features //! //! By default, no crate features are enabled. //! - `macro`: Enable the [`bounded_integer!`] macro. //! - `types`: Enable the bounded integer types that use const generics. //! - `serde`: Implement `Serialize` and `Deserialize` for the bounded integers, making sure all //! values will never be out of bounds. //! - `step_trait`: Implement the [`Step`] trait which allows the bounded integers to be easily used //! in ranges. This will require you to use nightly and place `#![feature(step_trait)]` in your //! crate root if you use the macro. //! //! [`bounded_integer!`]: https://docs.rs/bounded-integer/*/bounded_integer/macro.bounded_integer.html //! [`examples`]: https://docs.rs/bounded-integer/*/bounded_integer/examples/ //! [`Step`]: https://doc.rust-lang.org/nightly/core/iter/trait.Step.html #![cfg_attr(feature = "step_trait", feature(step_trait))] #![cfg_attr(doc_cfg, feature(doc_cfg))] #![no_std] #[cfg(feature = "types")] mod types; #[cfg(feature = "types")] pub use types::*; #[doc(hidden)] #[cfg(feature = "macro")] pub mod __private { #[cfg(feature = "serde")] pub use ::serde; #[cfg(all(not(feature = "serde"), not(feature = "step_trait")))] pub use bounded_integer_macro::not_serde_not_step_trait as proc_macro; #[cfg(all(not(feature = "serde"), feature = "step_trait"))] pub use bounded_integer_macro::not_serde_step_trait as proc_macro; #[cfg(all(feature = "serde", not(feature = "step_trait")))] pub use bounded_integer_macro::serde_not_step_trait as proc_macro; #[cfg(all(feature = "serde", feature = "step_trait"))] pub use bounded_integer_macro::serde_step_trait as proc_macro; } #[cfg(feature = "__examples")] pub mod examples; /// Generate a bounded integer type. /// /// It takes in single struct or enum, with the content being a bounded range expression, whose /// upper bound can be inclusive (`x..=y`) or exclusive (`x..y`). The attributes and visibility /// (e.g. `pub`) of the type are forwarded directly to the output type. /// /// See the [`examples`] module for examples of what this macro generates. /// /// # Examples /// /// With a struct: /// ``` #[cfg_attr(feature = "step_trait", doc = "# #![feature(step_trait)]")] /// # mod force_item_scope { /// # use bounded_integer::bounded_integer; /// bounded_integer! { /// pub struct S { -3..2 } /// } /// # } /// ``` /// The generated item should look like this (i8 is chosen as it is the smallest repr): /// ``` /// #[derive(Debug, Hash, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] /// #[repr(transparent)] /// pub struct S(i8); /// ``` /// And the methods will ensure that `-3 <= S.0 < 2`. /// /// With an enum: /// ``` #[cfg_attr(feature = "step_trait", doc = "# #![feature(step_trait)]")] /// # mod force_item_scope { /// # use bounded_integer::bounded_integer; /// bounded_integer! { /// pub enum S { 5..=7 } /// } /// # } /// ``` /// The generated item should look like this (u8 is chosen as it is the smallest repr): /// ``` /// #[derive(Debug, Hash, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] /// #[repr(u8)] /// pub enum S { /// P5 = 5, P6, P7 /// } /// ``` /// /// # Custom repr /// /// The item can have a `repr` attribute to specify how it will be represented in memory, which can /// be a `u*` or `i*` type. In this example we override the `repr` to be a `u16`, when it would /// have normally been a `u8`. /// /// ``` #[cfg_attr(feature = "step_trait", doc = "# #![feature(step_trait)]")] /// # mod force_item_scope { /// # use bounded_integer::bounded_integer; /// bounded_integer! { /// #[repr(u16)] /// pub struct S { 2..5 } /// } /// # } /// ``` /// The generated item should look like this: /// ``` /// #[derive(Debug, Hash, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] /// #[repr(transparent)] /// pub struct S(u16); /// ``` /// /// # Limitations /// /// - Both bounds of ranges must be closed and a simple const expression involving only literals and /// the following operators: /// - Negation (`-x`) /// - Addition (`x+y`), subtraction (`x-y`), multiplication (`x*y`), division (`x/y`) and /// remainder (`x%y`). /// - Bitwise not (`!x`), XOR (`x^y`), AND (`x&y`) and OR (`x|y`). #[cfg(feature = "macro")] #[cfg_attr(doc_cfg, doc(cfg(feature = "macro")))] #[macro_export] macro_rules! bounded_integer { ($($tt:tt)*) => { $crate::__private::proc_macro!([$crate] $($tt)*); }; }