1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
//! Low level AES IGE and key wrapping functionality
//!
//! AES ECB, CBC, XTS, CTR, CFB, GCM and other conventional symmetric encryption
//! modes are found in [`symm`]. This is the implementation of AES IGE and key wrapping
//!
//! Advanced Encryption Standard (AES) provides symmetric key cipher that
//! the same key is used to encrypt and decrypt data. This implementation
//! uses 128, 192, or 256 bit keys. This module provides functions to
//! create a new key with [`new_encrypt`].
//!
//! [`new_encrypt`]: struct.AesKey.html#method.new_encrypt
//!
//! The [`symm`] module should be used in preference to this module in most cases.
//! The IGE block cypher is a non-traditional cipher mode. More traditional AES
//! encryption methods are found in the [`Crypter`] and [`Cipher`] structs.
//!
//! [`symm`]: ../symm/index.html
//! [`Crypter`]: ../symm/struct.Crypter.html
//! [`Cipher`]: ../symm/struct.Cipher.html
//!
//! # Examples
//!
//! ## Key wrapping
//! ```rust
//! use boring::aes::{AesKey, unwrap_key, wrap_key};
//!
//! let kek = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
//! let key_to_wrap = b"\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xAA\xBB\xCC\xDD\xEE\xFF";
//!
//! let enc_key = AesKey::new_encrypt(kek).unwrap();
//! let mut ciphertext = [0u8; 24];
//! wrap_key(&enc_key, None, &mut ciphertext, &key_to_wrap[..]).unwrap();
//! let dec_key = AesKey::new_decrypt(kek).unwrap();
//! let mut orig_key = [0u8; 16];
//! unwrap_key(&dec_key, None, &mut orig_key, &ciphertext[..]).unwrap();
//!
//! assert_eq!(&orig_key[..], &key_to_wrap[..]);
//! ```
//!
use crate::ffi;
use libc::{c_int, c_uint, size_t};
use std::mem::MaybeUninit;
use std::ptr;
/// Provides Error handling for parsing keys.
#[derive(Debug)]
pub struct KeyError(());
/// The key used to encrypt or decrypt cipher blocks.
pub struct AesKey(ffi::AES_KEY);
impl AesKey {
/// Prepares a key for encryption.
///
/// # Failure
///
/// Returns an error if the key is not 128, 192, or 256 bits.
#[allow(deprecated)] // https://github.com/rust-lang/rust/issues/63566
pub fn new_encrypt(key: &[u8]) -> Result<AesKey, KeyError> {
unsafe {
assert!(key.len() <= c_int::MAX as usize / 8);
let mut aes_key = MaybeUninit::uninit();
let r = ffi::AES_set_encrypt_key(
key.as_ptr() as *const _,
key.len() as c_uint * 8,
aes_key.as_mut_ptr(),
);
if r == 0 {
Ok(AesKey(aes_key.assume_init()))
} else {
Err(KeyError(()))
}
}
}
/// Prepares a key for decryption.
///
/// # Failure
///
/// Returns an error if the key is not 128, 192, or 256 bits.
#[allow(deprecated)] // https://github.com/rust-lang/rust/issues/63566
pub fn new_decrypt(key: &[u8]) -> Result<AesKey, KeyError> {
unsafe {
assert!(key.len() <= c_int::MAX as usize / 8);
let mut aes_key = MaybeUninit::uninit();
let r = ffi::AES_set_decrypt_key(
key.as_ptr() as *const _,
key.len() as c_uint * 8,
aes_key.as_mut_ptr(),
);
if r == 0 {
Ok(AesKey(aes_key.assume_init()))
} else {
Err(KeyError(()))
}
}
}
}
/// Wrap a key, according to [RFC 3394](https://tools.ietf.org/html/rfc3394)
///
/// * `key`: The key-encrypting-key to use. Must be a encrypting key
/// * `iv`: The IV to use. You must use the same IV for both wrapping and unwrapping
/// * `out`: The output buffer to store the ciphertext
/// * `in_`: The input buffer, storing the key to be wrapped
///
/// Returns the number of bytes written into `out`
///
/// # Panics
///
/// Panics if either `out` or `in_` do not have sizes that are a multiple of 8, or if
/// `out` is not 8 bytes longer than `in_`
pub fn wrap_key(
key: &AesKey,
iv: Option<[u8; 8]>,
out: &mut [u8],
in_: &[u8],
) -> Result<usize, KeyError> {
unsafe {
assert!(out.len() >= in_.len() + 8); // Ciphertext is 64 bits longer (see 2.2.1)
let written = ffi::AES_wrap_key(
&key.0 as *const _ as *mut _, // this is safe, the implementation only uses the key as a const pointer.
iv.as_ref()
.map_or(ptr::null(), |iv| iv.as_ptr() as *const _),
out.as_ptr() as *mut _,
in_.as_ptr() as *const _,
in_.len() as size_t,
);
if written <= 0 {
Err(KeyError(()))
} else {
Ok(written as usize)
}
}
}
/// Unwrap a key, according to [RFC 3394](https://tools.ietf.org/html/rfc3394)
///
/// * `key`: The key-encrypting-key to decrypt the wrapped key. Must be a decrypting key
/// * `iv`: The same IV used for wrapping the key
/// * `out`: The buffer to write the unwrapped key to
/// * `in_`: The input ciphertext
///
/// Returns the number of bytes written into `out`
///
/// # Panics
///
/// Panics if either `out` or `in_` do not have sizes that are a multiple of 8, or
/// if `in_` is not 8 bytes longer than `out`
pub fn unwrap_key(
key: &AesKey,
iv: Option<[u8; 8]>,
out: &mut [u8],
in_: &[u8],
) -> Result<usize, KeyError> {
unsafe {
assert!(out.len() + 8 <= in_.len());
let written = ffi::AES_unwrap_key(
&key.0 as *const _ as *mut _, // this is safe, the implementation only uses the key as a const pointer.
iv.as_ref()
.map_or(ptr::null(), |iv| iv.as_ptr() as *const _),
out.as_ptr() as *mut _,
in_.as_ptr() as *const _,
in_.len() as size_t,
);
if written <= 0 {
Err(KeyError(()))
} else {
Ok(written as usize)
}
}
}
#[cfg(test)]
mod test {
use hex::FromHex;
use super::*;
// from the RFC https://tools.ietf.org/html/rfc3394#section-2.2.3
#[test]
fn test_wrap_unwrap() {
let raw_key = Vec::from_hex("000102030405060708090A0B0C0D0E0F").unwrap();
let key_data = Vec::from_hex("00112233445566778899AABBCCDDEEFF").unwrap();
let expected_ciphertext =
Vec::from_hex("1FA68B0A8112B447AEF34BD8FB5A7B829D3E862371D2CFE5").unwrap();
let enc_key = AesKey::new_encrypt(&raw_key).unwrap();
let mut wrapped = [0; 24];
assert_eq!(
wrap_key(&enc_key, None, &mut wrapped, &key_data).unwrap(),
24
);
assert_eq!(&wrapped[..], &expected_ciphertext[..]);
let dec_key = AesKey::new_decrypt(&raw_key).unwrap();
let mut unwrapped = [0; 16];
assert_eq!(
unwrap_key(&dec_key, None, &mut unwrapped, &wrapped).unwrap(),
16
);
assert_eq!(&unwrapped[..], &key_data[..]);
}
}