1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
use crate::{AsyncTrainStat, AsyncTrainerConfig, PushedItemMessage, SyncModel};
use border_core::{
record::{Record, RecordValue::Scalar, Recorder},
Agent, Env, Evaluator, ReplayBufferBase,
};
use crossbeam_channel::{Receiver, Sender};
use log::info;
use std::{
marker::PhantomData,
sync::{Arc, Mutex},
time::SystemTime,
};
#[cfg_attr(doc, aquamarine::aquamarine)]
/// Manages asynchronous training loop in a single machine.
///
/// It interacts with [`ActorManager`] as shown below:
///
/// ```mermaid
/// flowchart LR
/// subgraph ActorManager
/// E[Actor]-->|ReplayBufferBase::PushedItem|H[ReplayBufferProxy]
/// F[Actor]-->H
/// G[Actor]-->H
/// end
/// K-->|SyncModel::ModelInfo|E
/// K-->|SyncModel::ModelInfo|F
/// K-->|SyncModel::ModelInfo|G
///
/// subgraph I[AsyncTrainer]
/// H-->|PushedItemMessage|J[ReplayBuffer]
/// J-->|ReplayBufferBase::Batch|K[Agent]
/// end
/// ```
///
/// * In [`ActorManager`] (right), [`Actor`]s sample transitions, which have type
/// [`ReplayBufferBase::PushedItem`], in parallel and push the transitions into
/// [`ReplayBufferProxy`]. It should be noted that [`ReplayBufferProxy`] has a
/// type parameter of [`ReplayBufferBase`] and the proxy accepts
/// [`ReplayBufferBase::PushedItem`].
/// * The proxy sends the transitions into the replay buffer, implementing
/// [`ReplayBufferBase`], in the [`AsyncTrainer`].
/// * The [`Agent`] in [`AsyncTrainer`] trains its model parameters by using batches
/// of type [`ReplayBufferBase::Batch`], which are taken from the replay buffer.
/// * The model parameters of the [`Agent`] in [`AsyncTrainer`] are wrapped in
/// [`SyncModel::ModelInfo`] and periodically sent to the [`Agent`]s in [`Actor`]s.
/// [`Agent`] must implement [`SyncModel`] to synchronize its model.
///
/// [`ActorManager`]: crate::ActorManager
/// [`Actor`]: crate::Actor
/// [`ReplayBufferBase::PushedItem`]: border_core::ReplayBufferBase::PushedItem
/// [`ReplayBufferProxy`]: crate::ReplayBufferProxy
/// [`ReplayBufferBase`]: border_core::ReplayBufferBase
/// [`SyncModel::ModelInfo`]: crate::SyncModel::ModelInfo
pub struct AsyncTrainer<A, E, R>
where
A: Agent<E, R> + SyncModel,
E: Env,
// R: ReplayBufferBase + Sync + Send + 'static,
R: ReplayBufferBase,
R::PushedItem: Send + 'static,
{
/// Where to save the trained model.
model_dir: Option<String>,
/// Interval of recording in training steps.
record_interval: usize,
/// Interval of evaluation in training steps.
eval_interval: usize,
/// The maximal number of training steps.
max_train_steps: usize,
/// Interval of saving the model in optimization steps.
save_interval: usize,
/// Interval of synchronizing model parameters in training steps.
sync_interval: usize,
/// Receiver of pushed items.
r_bulk_pushed_item: Receiver<PushedItemMessage<R::PushedItem>>,
/// If `false`, stops the actor threads.
stop: Arc<Mutex<bool>>,
/// Configuration of [Agent].
agent_config: A::Config,
/// Configuration of [Env]. Note that it is used only for evaluation, not for training.
env_config: E::Config,
/// Sender of model info.
model_info_sender: Sender<(usize, A::ModelInfo)>,
/// Configuration of replay buffer.
replay_buffer_config: R::Config,
phantom: PhantomData<(A, E, R)>,
}
impl<A, E, R> AsyncTrainer<A, E, R>
where
A: Agent<E, R> + SyncModel,
E: Env,
// R: ReplayBufferBase + Sync + Send + 'static,
R: ReplayBufferBase,
R::PushedItem: Send + 'static,
{
/// Creates [`AsyncTrainer`].
pub fn build(
config: &AsyncTrainerConfig,
agent_config: &A::Config,
env_config: &E::Config,
replay_buffer_config: &R::Config,
r_bulk_pushed_item: Receiver<PushedItemMessage<R::PushedItem>>,
model_info_sender: Sender<(usize, A::ModelInfo)>,
stop: Arc<Mutex<bool>>,
) -> Self {
Self {
model_dir: config.model_dir.clone(),
record_interval: config.record_interval,
eval_interval: config.eval_interval,
max_train_steps: config.max_train_steps,
save_interval: config.save_interval,
sync_interval: config.sync_interval,
agent_config: agent_config.clone(),
env_config: env_config.clone(),
replay_buffer_config: replay_buffer_config.clone(),
r_bulk_pushed_item,
model_info_sender,
stop,
phantom: PhantomData,
}
}
fn save_model(agent: &A, model_dir: String) {
match agent.save(&model_dir) {
Ok(()) => info!("Saved the model in {:?}.", &model_dir),
Err(_) => info!("Failed to save model in {:?}.", &model_dir),
}
}
fn save_best_model(agent: &A, model_dir: String) {
let model_dir = model_dir + "/best";
Self::save_model(agent, model_dir);
}
/// Record.
#[inline]
fn record(
&mut self,
record: &mut Record,
opt_steps_: &mut usize,
samples: &mut usize,
time: &mut SystemTime,
samples_total: usize,
) {
let duration = time.elapsed().unwrap().as_secs_f32();
let ops = (*opt_steps_ as f32) / duration;
let sps = (*samples as f32) / duration;
let spo = (*samples as f32) / (*opt_steps_ as f32);
record.insert("samples_total", Scalar(samples_total as _));
record.insert("opt_steps_per_sec", Scalar(ops));
record.insert("samples_per_sec", Scalar(sps));
record.insert("samples_per_opt_steps", Scalar(spo));
// info!("Collected samples per optimization step = {}", spo);
// Reset counter
*opt_steps_ = 0;
*samples = 0;
*time = SystemTime::now();
}
/// Flush record.
#[inline]
fn flush(&mut self, opt_steps: usize, mut record: Record, recorder: &mut impl Recorder) {
record.insert("opt_steps", Scalar(opt_steps as _));
recorder.write(record);
}
/// Save model.
#[inline]
fn save(&mut self, opt_steps: usize, agent: &A) {
let model_dir =
self.model_dir.as_ref().unwrap().clone() + format!("/{}", opt_steps).as_str();
Self::save_model(agent, model_dir);
}
/// Sync model.
#[inline]
fn sync(&mut self, agent: &A) {
let model_info = agent.model_info();
// TODO: error handling
self.model_info_sender.send(model_info).unwrap();
}
// /// Run a thread for replay buffer.
// fn run_replay_buffer_thread(&self, buffer: Arc<Mutex<R>>) {
// let r = self.r_bulk_pushed_item.clone();
// let stop = self.stop.clone();
// std::thread::spawn(move || loop {
// let msg = r.recv().unwrap();
// {
// let mut buffer = buffer.lock().unwrap();
// buffer.push(msg.pushed_item);
// }
// if *stop.lock().unwrap() {
// break;
// }
// std::thread::sleep(std::time::Duration::from_millis(100));
// });
// }
/// Runs training loop.
///
/// In the training loop, the following values will be pushed into the given recorder:
///
/// * `samples_total` - Total number of samples pushed into the replay buffer.
/// Here, a "sample" is an item in [`ExperienceBufferBase::PushedItem`].
/// * `opt_steps_per_sec` - The number of optimization steps per second.
/// * `samples_per_sec` - The number of samples per second.
/// * `samples_per_opt_steps` - The number of samples per optimization step.
///
/// These values will typically be monitored with tensorboard.
///
/// [`ExperienceBufferBase::PushedItem`]: border_core::ExperienceBufferBase::PushedItem
pub fn train<D>(
&mut self,
recorder: &mut impl Recorder,
evaluator: &mut D,
guard_init_env: Arc<Mutex<bool>>,
) -> AsyncTrainStat
where
D: Evaluator<E, A>,
{
// TODO: error handling
let _env = {
let mut tmp = guard_init_env.lock().unwrap();
*tmp = true;
E::build(&self.env_config, 0).unwrap()
};
let mut agent = A::build(self.agent_config.clone());
let mut buffer = R::build(&self.replay_buffer_config);
// let buffer = Arc::new(Mutex::new(R::build(&self.replay_buffer_config)));
agent.train();
// self.run_replay_buffer_thread(buffer.clone());
let mut max_eval_reward = f32::MIN;
let mut opt_steps = 0;
let mut opt_steps_ = 0;
let mut samples = 0;
let time_total = SystemTime::now();
let mut samples_total = 0;
let mut time = SystemTime::now();
info!("Send model info first in AsyncTrainer");
self.sync(&mut agent);
info!("Starts training loop");
loop {
// Update replay buffer
let msgs: Vec<_> = self.r_bulk_pushed_item.try_iter().collect();
msgs.into_iter().for_each(|msg| {
samples += msg.pushed_items.len();
samples_total += msg.pushed_items.len();
msg.pushed_items
.into_iter()
.for_each(|pushed_item| buffer.push(pushed_item).unwrap())
});
let record = agent.opt(&mut buffer);
if let Some(mut record) = record {
opt_steps += 1;
opt_steps_ += 1;
let do_eval = opt_steps % self.eval_interval == 0;
let do_record = opt_steps % self.record_interval == 0;
let do_flush = do_eval || do_record;
let do_save = opt_steps % self.save_interval == 0;
let do_sync = opt_steps % self.sync_interval == 0;
// Do evaluation
if do_eval {
info!("Starts evaluation of the trained model");
agent.eval();
let eval_reward = evaluator.evaluate(&mut agent).unwrap();
agent.train();
record.insert("eval_reward", Scalar(eval_reward));
// Save the best model up to the current iteration
if eval_reward > max_eval_reward {
max_eval_reward = eval_reward;
let model_dir = self.model_dir.as_ref().unwrap().clone();
Self::save_best_model(&agent, model_dir)
}
}
// Record
if do_record {
info!("Records training logs");
self.record(
&mut record,
&mut opt_steps_,
&mut samples,
&mut time,
samples_total,
);
}
// Flush record to the recorder
if do_flush {
info!("Flushes records");
self.flush(opt_steps, record, recorder);
}
// Save the current model
if do_save {
info!("Saves the trained model");
self.save(opt_steps, &mut agent);
}
// Finish the training loop
if opt_steps == self.max_train_steps {
// Flush channels
*self.stop.lock().unwrap() = true;
let _: Vec<_> = self.r_bulk_pushed_item.try_iter().collect();
self.sync(&agent);
break;
}
// Sync the current model
if do_sync {
info!("Sends the trained model info to ActorManager");
self.sync(&agent);
}
}
}
info!("Stopped training loop");
let duration = time_total.elapsed().unwrap();
let time_total = duration.as_secs_f32();
let samples_per_sec = samples_total as f32 / time_total;
let opt_per_sec = self.max_train_steps as f32 / time_total;
AsyncTrainStat {
samples_per_sec,
duration,
opt_per_sec,
}
}
}