1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
use core::{
cell::UnsafeCell,
mem::{replace, ManuallyDrop, MaybeUninit},
sync::atomic::{AtomicUsize, Ordering},
};
use alloc::vec::Vec;
use allocator_api2::{Allocator, Global};
use parking_lot::RwLock;
use crate::local::BlinkAlloc;
struct Inner<A: Allocator> {
pop_array: Vec<UnsafeCell<ManuallyDrop<BlinkAlloc<A>>>>,
next_pop: AtomicUsize,
push_array: Vec<UnsafeCell<MaybeUninit<BlinkAlloc<A>>>>,
next_push: AtomicUsize,
}
unsafe impl<A> Sync for Inner<A>
where
A: Allocator,
BlinkAlloc<A>: Send,
{
}
pub struct BlinkAllocCache<A: Allocator = Global> {
inner: RwLock<Inner<A>>,
}
impl<A> Default for BlinkAllocCache<A>
where
A: Allocator,
{
fn default() -> Self {
Self::new()
}
}
impl<A> BlinkAllocCache<A>
where
A: Allocator,
{
pub const fn new() -> Self {
BlinkAllocCache {
inner: RwLock::new(Inner {
pop_array: Vec::new(),
next_pop: AtomicUsize::new(0),
push_array: Vec::new(),
next_push: AtomicUsize::new(0),
}),
}
}
pub fn pop(&self) -> Option<BlinkAlloc<A>> {
let inner = self.inner.read();
if !inner.pop_array.is_empty() {
let idx = inner.next_pop.fetch_add(1, Ordering::Acquire);
if idx < inner.pop_array.len() {
let blink = unsafe { ManuallyDrop::take(&mut *inner.pop_array[idx].get()) };
return Some(blink);
}
prevent_overflow(&inner.next_pop, idx, inner.pop_array.len());
}
if inner.next_push.load(Ordering::Relaxed) == 0 {
return None;
}
drop(inner);
let mut inner = self.inner.write();
Self::flush(&mut inner);
inner
.pop_array
.pop()
.map(|cell| ManuallyDrop::into_inner(cell.into_inner()))
}
pub fn push(&self, blink: BlinkAlloc<A>) {
let inner = self.inner.read();
if !inner.push_array.is_empty() {
let idx = inner.next_push.fetch_add(1, Ordering::Acquire);
if idx < inner.push_array.len() {
MaybeUninit::write(unsafe { &mut *inner.push_array[idx].get() }, blink);
return;
}
prevent_overflow(&inner.next_push, idx, inner.push_array.len());
}
drop(inner);
let mut inner = self.inner.write();
Self::flush(&mut inner);
inner
.pop_array
.push(UnsafeCell::new(ManuallyDrop::new(blink)));
}
fn flush(inner: &mut Inner<A>) {
let pushed = replace(inner.next_push.get_mut(), 0).min(inner.push_array.len());
let popped = replace(inner.next_pop.get_mut(), 0).min(inner.pop_array.len());
let pushed_iter = inner.push_array.drain(..pushed);
inner.pop_array.splice(
..popped,
pushed_iter.map(|cell| {
UnsafeCell::new(ManuallyDrop::new(unsafe {
cell.into_inner().assume_init()
}))
}),
);
}
}
fn prevent_overflow(atomic: &AtomicUsize, current: usize, upper: usize) {
#[cold]
fn cold_store(atomic: &AtomicUsize, upper: usize) {
atomic.store(upper, Ordering::Relaxed);
}
if current >= isize::MAX as usize {
cold_store(atomic, upper);
}
}