1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
use super::*;
use crate::{buffer::flags::MemAccess, non_null_const};
use blaze_proc::docfg;
use core::{
fmt::{Debug, Display},
mem::MaybeUninit,
num::{IntErrorKind, NonZeroU32, NonZeroU64, NonZeroUsize},
str::FromStr,
};
use opencl_sys::*;
use std::{ffi::c_void, ptr::NonNull};
lazy_static! {
static ref DEVICES: Vec<RawDevice> = unsafe {
let mut result = Vec::<RawDevice>::new();
for platform in RawPlatform::all() {
let mut cnt = 0;
tri_panic!(clGetDeviceIDs(
platform.id(),
CL_DEVICE_TYPE_ALL,
0,
core::ptr::null_mut(),
&mut cnt
));
let cnt_size = usize::try_from(cnt).unwrap();
result.reserve(cnt_size);
tri_panic!(clGetDeviceIDs(
platform.id(),
CL_DEVICE_TYPE_ALL,
cnt,
result.as_mut_ptr().add(result.len()).cast(),
core::ptr::null_mut()
));
result.set_len(result.len() + cnt_size);
}
result
};
}
/// OpenCL device
#[derive(PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct RawDevice(NonNull<c_void>);
impl RawDevice {
#[inline(always)]
pub const fn id(&self) -> cl_device_id {
self.0.as_ptr()
}
#[inline(always)]
pub const unsafe fn from_id(id: cl_device_id) -> Option<Self> {
match non_null_const(id) {
Some(x) => Some(Self(x)),
None => None,
}
}
#[inline(always)]
pub const unsafe fn from_id_unchecked(id: cl_device_id) -> Self {
Self(NonNull::new_unchecked(id))
}
/// The default compute device address space size specified as an unsigned integer value in bits. Currently supported values are 32 or 64 bits.
#[inline(always)]
pub fn address_bits(&self) -> Result<u32> {
self.get_info_bits(CL_DEVICE_ADDRESS_BITS)
}
/// Describes the various memory orders and scopes that the device supports for atomic memory operations.
#[docfg(feature = "cl3")]
#[inline(always)]
pub fn atomic_memory_capabilities(&self) -> Result<Option<AtomicCapabilities>> {
let v = self.get_info_bits::<opencl_sys::cl_device_atomic_capabilities>(
opencl_sys::CL_DEVICE_ATOMIC_MEMORY_CAPABILITIES,
)?;
Ok(AtomicCapabilities::from_bits(v))
}
/// Describes the various memory orders and scopes that the device supports for atomic fence operations.
#[docfg(feature = "cl3")]
#[inline(always)]
pub fn atomic_fence_capabilities(&self) -> Result<Option<AtomicCapabilities>> {
let v = self.get_info_bits::<opencl_sys::cl_device_atomic_capabilities>(
opencl_sys::CL_DEVICE_ATOMIC_FENCE_CAPABILITIES,
)?;
Ok(AtomicCapabilities::from_bits(v))
}
/// Is ```true``` if the device is available and ```false``` if the device is not available.
#[inline(always)]
pub fn available(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(CL_DEVICE_AVAILABLE)?;
Ok(v != 0)
}
/// A list of built-in kernels supported by the device. An empty list is returned if no built-in kernels are supported by the device.
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn built_in_kernels(&self) -> Result<Vec<String>> {
Ok(self
.built_in_kernels_string()?
.split(';')
.map(str::trim)
.map(str::to_string)
.collect::<Vec<_>>())
}
/// A semi-colon separated list of built-in kernels supported by the device. An empty string is returned if no built-in kernels are supported by the device.
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn built_in_kernels_string(&self) -> Result<String> {
self.get_info_string(opencl_sys::CL_DEVICE_BUILT_IN_KERNELS)
}
/// Is ```false``` if the implementation does not have a compiler available to compile the program source. Is ```true``` if the compiler is available. This can be CL_FALSE for the embedded platform profile only.
#[inline(always)]
pub fn compiler_available(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(CL_DEVICE_COMPILER_AVAILABLE)?;
Ok(v != 0)
}
/// Describes device-side enqueue capabilities of the device.
#[docfg(feature = "cl3")]
#[inline(always)]
pub fn device_enqueue_capabilities(&self) -> Result<Option<DeviceEnqueueCapabilities>> {
let v = self.get_info_bits::<opencl_sys::cl_device_device_enqueue_capabilities>(
opencl_sys::CL_DEVICE_DEVICE_ENQUEUE_CAPABILITIES,
)?;
Ok(DeviceEnqueueCapabilities::from_bits(v))
}
/// Describes the OPTIONAL double precision floating-point capability of the OpenCL device
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn double_fp_config(&self) -> Result<FpConfig> {
self.get_info_bits(opencl_sys::CL_DEVICE_DOUBLE_FP_CONFIG)
}
/// Is ```true``` if the OpenCL device is a little endian device and ```false``` otherwise.
#[inline(always)]
pub fn endian_little(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(CL_DEVICE_ENDIAN_LITTLE)?;
Ok(v != 0)
}
/// Is ```true``` if the device implements error correction for the memories, caches, registers etc. in the device. Is ```false``` if the device does not implement error correction. This can be a requirement for certain clients of OpenCL.
#[inline(always)]
pub fn error_connection_support(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(CL_DEVICE_ERROR_CORRECTION_SUPPORT)?;
Ok(v != 0)
}
/// Describes the execution capabilities of the device
#[inline(always)]
pub fn execution_capabilities(&self) -> Result<ExecCapabilities> {
self.get_info_bits(CL_DEVICE_EXECUTION_CAPABILITIES)
}
/// Returns a list of extension names
#[inline(always)]
pub fn extensions(&self) -> Result<Vec<String>> {
Ok(self
.get_info_string(CL_DEVICE_EXTENSIONS)?
.split_whitespace()
.map(String::from)
.collect::<Vec<_>>())
}
/// Returns a space-separated list of extension names (the extension names themselves do not contain any spaces)
#[inline(always)]
pub fn extensions_string(&self) -> Result<String> {
self.get_info_string(CL_DEVICE_EXTENSIONS)
}
/// Is ```true``` if the device supports the generic address space and its associated built-in functions, and ```false``` otherwise.
#[docfg(feature = "cl3")]
#[inline(always)]
pub fn generic_address_space_support(&self) -> Result<bool> {
let v =
self.get_info_bits::<cl_bool>(opencl_sys::CL_DEVICE_GENERIC_ADDRESS_SPACE_SUPPORT)?;
Ok(v != 0)
}
/// Size of global memory cache in bytes.
#[inline(always)]
pub fn global_mem_cache_size(&self) -> Result<u64> {
self.get_info_bits(CL_DEVICE_GLOBAL_MEM_CACHE_SIZE)
}
/// Type of global memory cache supported.
#[inline(always)]
pub fn global_mem_cache_type(&self) -> Result<MemAccess> {
match self.get_info_bits::<cl_device_mem_cache_type>(CL_DEVICE_GLOBAL_MEM_CACHE_TYPE)? {
CL_NONE => Ok(MemAccess::NONE),
CL_READ_ONLY_CACHE => Ok(MemAccess::READ_ONLY),
CL_READ_WRITE_CACHE => Ok(MemAccess::READ_WRITE),
_ => unreachable!(),
}
}
/// Size of global memory cache line in bytes.
#[inline(always)]
pub fn global_mem_cahceline_size(&self) -> Result<u32> {
self.get_info_bits(CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE)
}
/// Size of global memory in bytes.
#[inline(always)]
pub fn global_mem_size(&self) -> Result<u64> {
self.get_info_bits(CL_DEVICE_GLOBAL_MEM_SIZE)
}
/// Maximum preferred total size, in bytes, of all program variables in the global address space. This is a performance hint. An implementation may place such variables in storage with optimized device access. This query returns the capacity of such storage. The minimum value is 0.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn global_variable_preferred_total_size(&self) -> Result<usize> {
self.get_info_bits(opencl_sys::CL_DEVICE_GLOBAL_VARIABLE_PREFERRED_TOTAL_SIZE)
}
/// Describes the OPTIONAL half precision floating-point capability of the OpenCL device
#[inline(always)]
pub fn half_fp_config(&self) -> Result<FpConfig> {
self.get_info_bits(CL_DEVICE_HALF_FP_CONFIG)
}
/// Is ```true``` if the device and the host have a unified memory subsystem and is ```false``` otherwise.
#[docfg(feature = "cl1_1")]
#[cfg_attr(feature = "cl2", deprecated)]
#[inline(always)]
pub fn host_unified_memory(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(opencl_sys::CL_DEVICE_HOST_UNIFIED_MEMORY)?;
Ok(v != 0)
}
/// The intermediate languages that can be supported by clCreateProgramWithIL for this device.
#[docfg(feature = "cl2_1")]
#[inline(always)]
pub fn il_version(&self) -> Result<String> {
self.get_info_string(opencl_sys::CL_DEVICE_IL_VERSION)
}
/// Is ```true``` if images are supported by the OpenCL device and ```false``` otherwise.
#[inline(always)]
pub fn image_support(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(CL_DEVICE_IMAGE_SUPPORT)?;
Ok(v != 0)
}
/// Max number of images in a 1D or 2D image array. The minimum value is 2048 if CL_DEVICE_IMAGE_SUPPORT is CL_TRUE, the value is 0 otherwise.
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn image_max_array_size(&self) -> Result<Option<NonZeroUsize>> {
self.get_info_bits(opencl_sys::CL_DEVICE_IMAGE_MAX_ARRAY_SIZE)
.map(NonZeroUsize::new)
}
/// Max number of pixels for a 1D image created from a buffer object. The minimum value is 65536 if CL_DEVICE_IMAGE_SUPPORT is CL_TRUE, the value is 0 otherwise.
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn image_max_buffer_size(&self) -> Result<Option<NonZeroUsize>> {
self.get_info_bits(opencl_sys::CL_DEVICE_IMAGE_MAX_BUFFER_SIZE)
.map(NonZeroUsize::new)
}
/// The row pitch alignment size in pixels for 2D images created from a buffer. The value returned must be a power of 2.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn image_pitch_alignment(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits(opencl_sys::CL_DEVICE_IMAGE_PITCH_ALIGNMENT)
.map(NonZeroU32::new)
}
/// This query specifies the minimum alignment in pixels of the host_ptr specified to clCreateBuffer or clCreateBufferWithProperties when a 2D image is created from a buffer which was created using CL_MEM_USE_HOST_PTR. The value returned must be a power of 2.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn image_base_address_alignment(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits(opencl_sys::CL_DEVICE_IMAGE_PITCH_ALIGNMENT)
.map(NonZeroU32::new)
}
/// Max height of 2D image in pixels. The minimum value is 8192 if [`image_support`](RawDevice::image_support) is ```true```.
#[inline(always)]
pub fn image2d_max_height(&self) -> Result<Option<NonZeroUsize>> {
self.get_info_bits::<usize>(CL_DEVICE_IMAGE2D_MAX_HEIGHT)
.map(NonZeroUsize::new)
}
/// Max width of 2D image in pixels. The minimum value is 8192 if [`image_support`](RawDevice::image_support) is ```true```.
#[inline(always)]
pub fn image2d_max_width(&self) -> Result<Option<NonZeroUsize>> {
self.get_info_bits::<usize>(CL_DEVICE_IMAGE2D_MAX_WIDTH)
.map(NonZeroUsize::new)
}
/// Max depth of 3D image in pixels. The minimum value is 2048 if [`image_support`](RawDevice::image_support) is ```true```.
#[inline(always)]
pub fn image3d_max_depth(&self) -> Result<Option<NonZeroUsize>> {
self.get_info_bits::<usize>(CL_DEVICE_IMAGE3D_MAX_DEPTH)
.map(NonZeroUsize::new)
}
/// Max height of 3D image in pixels. The minimum value is 2048 if [`image_support`](RawDevice::image_support) is ```true```.
#[inline(always)]
pub fn image3d_max_height(&self) -> Result<Option<NonZeroUsize>> {
self.get_info_bits::<usize>(CL_DEVICE_IMAGE3D_MAX_HEIGHT)
.map(NonZeroUsize::new)
}
/// Max width of 3D image in pixels. The minimum value is 2048 if [`image_support`](RawDevice::image_support) is ```true```.
#[inline(always)]
pub fn image3d_max_width(&self) -> Result<Option<NonZeroUsize>> {
self.get_info_bits::<usize>(CL_DEVICE_IMAGE3D_MAX_WIDTH)
.map(NonZeroUsize::new)
}
/// Returns the latest version of the conformance test suite that this device has fully passed in accordance with the official conformance process.
#[docfg(feature = "cl3")]
#[inline(always)]
pub fn latest_conformance_version_passed(&self) -> Result<String> {
self.get_info_string(opencl_sys::CL_DEVICE_LATEST_CONFORMANCE_VERSION_PASSED)
}
/// Size of local memory arena in bytes. The minimum value is 16 KB.
#[inline(always)]
pub fn local_mem_size(&self) -> Result<NonZeroU64> {
unsafe {
Ok(NonZeroU64::new_unchecked(
self.get_info_bits::<u64>(CL_DEVICE_LOCAL_MEM_SIZE)?,
))
}
}
/// Type of local memory supported.
#[inline(always)]
pub fn local_mem_type(&self) -> Result<LocalMemType> {
self.get_info_bits(CL_DEVICE_LOCAL_MEM_TYPE)
}
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn linker_available(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(opencl_sys::CL_DEVICE_LINKER_AVAILABLE)?;
Ok(v != 0)
}
/// Maximum configured clock frequency of the device in MHz.
#[docfg(feature = "cl2_2")]
#[inline(always)]
pub fn max_clock_frequency(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_MAX_CLOCK_FREQUENCY)
}
/// The number of parallel compute cores on the OpenCL device. The minimum value is 1.
#[inline(always)]
pub fn max_compute_units(&self) -> Result<NonZeroU32> {
unsafe {
Ok(NonZeroU32::new_unchecked(
self.get_info_bits::<u32>(CL_DEVICE_MAX_COMPUTE_UNITS)?,
))
}
}
/// Max number of arguments declared with the ```__constant``` qualifier in a kernel. The minimum value is 8.
#[inline(always)]
pub fn max_constant_args(&self) -> Result<NonZeroU32> {
unsafe {
Ok(NonZeroU32::new_unchecked(
self.get_info_bits::<u32>(CL_DEVICE_MAX_CONSTANT_ARGS)?,
))
}
}
/// Max size in bytes of a constant buffer allocation. The minimum value is 64 KB.
#[inline(always)]
pub fn max_constant_buffer_size(&self) -> Result<NonZeroU64> {
unsafe {
Ok(NonZeroU64::new_unchecked(self.get_info_bits::<u64>(
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE,
)?))
}
}
/// The maximum number of bytes of storage that may be allocated for any single variable in program scope or inside a function in an OpenCL kernel language declared in the global address space.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn max_global_variable_size(&self) -> Result<Option<NonZeroUsize>> {
self.get_info_bits(opencl_sys::CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE)
.map(NonZeroUsize::new)
}
/// Max size of memory object allocation in bytes. The minimum value is max (1/4th of [```global_mem_size```](), 128*1024*1024)
#[inline(always)]
pub fn max_mem_alloc_size(&self) -> Result<NonZeroU64> {
unsafe {
Ok(NonZeroU64::new_unchecked(
self.get_info_bits::<u64>(CL_DEVICE_MAX_MEM_ALLOC_SIZE)?,
))
}
}
/// Maximum number of sub-groups in a work-group that a device is capable of executing on a single compute unit, for any given kernel-instance running on the device. The minimum value is 1 if the device supports subgroups, and must be 0 for devices that do not support subgroups. Support for subgroups is required for an OpenCL 2.1 or 2.2 device.
#[docfg(feature = "cl2_1")]
#[inline(always)]
pub fn max_num_sub_groups(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits(opencl_sys::CL_DEVICE_MAX_NUM_SUB_GROUPS)
.map(NonZeroU32::new)
}
/// The maximum number of events in use by a device queue. These refer to events returned by the enqueue_ built-in functions to a device queue or user events returned by the create_user_event built-in function that have not been released. The minimum value is 1024 for devices supporting on-device queues, and must be 0 for devices that do not support on-device queues.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn max_on_device_events(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits(opencl_sys::CL_DEVICE_MAX_ON_DEVICE_EVENTS)
.map(NonZeroU32::new)
}
/// The maximum number of device queues that can be created for this device in a single context. The minimum value is 1 for devices supporting on-device queues, and must be 0 for devices that do not support on-device queues.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn max_on_device_queues(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits(opencl_sys::CL_DEVICE_MAX_ON_DEVICE_QUEUES)
.map(NonZeroU32::new)
}
/// Max size in bytes of the arguments that can be passed to a kernel. The minimum value is 256.
#[inline(always)]
pub fn max_parameter_size(&self) -> Result<NonZeroUsize> {
unsafe {
Ok(NonZeroUsize::new_unchecked(
self.get_info_bits::<usize>(CL_DEVICE_MAX_PARAMETER_SIZE)?,
))
}
}
/// The maximum number of pipe objects that can be passed as arguments to a kernel. The minimum value is 16 for devices supporting pipes, and must be 0 for devices that do not support pipes.
#[docfg(featurew = "cl2")]
#[inline(always)]
pub fn max_pipe_args(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits(opencl_sys::CL_DEVICE_MAX_PIPE_ARGS)
.map(NonZeroU32::new)
}
/// Max number of simultaneous image objects that can be read by a kernel. The minimum value is 128 if [`image_support`](RawDevice::image_support) is ```true```.
#[inline(always)]
pub fn max_read_image_args(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits::<u32>(CL_DEVICE_MAX_READ_IMAGE_ARGS)
.map(NonZeroU32::new)
}
/// Max number of image objects arguments of a kernel declared with the write_only or read_write qualifier.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn max_read_write_image_args(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits::<u32>(opencl_sys::CL_DEVICE_MAX_READ_IMAGE_ARGS)
.map(NonZeroU32::new)
}
/// Maximum number of samplers that can be used in a kernel. The minimum value is 16 if [`image_support`](RawDevice::image_support) is ```true```.
#[inline(always)]
pub fn max_samplers(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits::<u32>(CL_DEVICE_MAX_SAMPLERS)
.map(NonZeroU32::new)
}
/// Maximum number of work-items in a work-group executing a kernel using the data parallel execution model. The minimum value is 1.
#[inline(always)]
pub fn max_work_group_size(&self) -> Result<NonZeroUsize> {
unsafe {
Ok(NonZeroUsize::new_unchecked(
self.get_info_bits::<usize>(CL_DEVICE_MAX_WORK_GROUP_SIZE)?,
))
}
}
/// Maximum dimensions that specify the global and local work-item IDs used by the data parallel execution model. The minimum value is 3.
#[inline(always)]
pub fn max_work_item_dimensions(&self) -> Result<NonZeroU32> {
unsafe {
Ok(NonZeroU32::new_unchecked(self.get_info_bits::<u32>(
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,
)?))
}
}
/// Maximum number of work-items that can be specified in each dimension of the work-group to clEnqueueNDRangeKernel. Returns n ```usize``` entries, where n is the value returned by the query for [`max_work_item_dimensions`](RawDevice::max_work_item_dimensions). The minimum value is (1, 1, 1).
#[inline(always)]
pub fn max_work_item_sizes(&self) -> Result<Vec<NonZeroUsize>> {
let n = usize::try_from(self.max_work_item_dimensions()?.get()).unwrap();
// FIXME: maybe using nonzero ints messes up the alignment?
let mut max_work_item_sizes = Vec::<NonZeroUsize>::with_capacity(n);
let len = n
.checked_mul(core::mem::size_of::<usize>())
.expect("Integer multiplication oveflow. Too many work items to fit in a vector");
unsafe {
clGetDeviceInfo(
self.id(),
CL_DEVICE_MAX_WORK_ITEM_SIZES,
len,
max_work_item_sizes.as_mut_ptr().cast(),
core::ptr::null_mut(),
);
max_work_item_sizes.set_len(n);
}
Ok(max_work_item_sizes)
}
/// Max number of simultaneous image objects that can be written to by a kernel. The minimum value is 8 if [`image_support`](RawDevice::image_support) is ```true```.
#[inline(always)]
pub fn max_write_image_args(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits::<u32>(CL_DEVICE_MAX_WRITE_IMAGE_ARGS)
.map(NonZeroU32::new)
}
/// Describes the alignment in bits of the base address of any allocated memory object.
#[inline(always)]
pub fn mem_base_addr_align(&self) -> Result<u32> {
self.get_info_bits(CL_DEVICE_MEM_BASE_ADDR_ALIGN)
}
/// The smallest alignment in bytes which can be used for any data type.
#[cfg_attr(feature = "cl1_2", deprecated)]
#[inline(always)]
pub fn min_data_type_align_size(&self) -> Result<u32> {
self.get_info_bits(CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE)
}
/// Device name string.
#[inline(always)]
pub fn name(&self) -> Result<String> {
self.get_info_string(CL_DEVICE_NAME)
}
/// Returns the native ISA vector width. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn native_vector_width_char(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR)
}
/// Returns the native ISA vector width. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn native_vector_width_short(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT)
}
/// Returns the native ISA vector width. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn native_vector_width_int(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_NATIVE_VECTOR_WIDTH_INT)
}
/// Returns the native ISA vector width. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn native_vector_width_long(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG)
}
/// Returns the native ISA vector width. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(all(feature = "cl1_1", feature = "half"))]
#[inline(always)]
pub fn native_vector_width_half(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF)
}
/// Returns the native ISA vector width. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn native_vector_width_float(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT)
}
/// Returns the native ISA vector width. The vector width is defined as the number of scalar elements that can be stored in the vector
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn native_vector_width_double(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE)
}
/// Is ```true``` if the device supports non-uniform work-groups, and ```false``` otherwise.
#[docfg(feature = "cl3")]
#[inline(always)]
pub fn non_uniform_work_group_support(&self) -> Result<bool> {
let v =
self.get_info_bits::<cl_bool>(opencl_sys::CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT)?;
Ok(v != 0)
}
/// Returns the highest fully backwards compatible OpenCL C version supported by the compiler for the device.
#[docfg(feature = "cl1_1")]
#[cfg_attr(feature = "cl3", deprecated)]
#[inline(always)]
pub fn opencl_c_version(&self) -> Result<String> {
self.get_info_string(opencl_sys::CL_DEVICE_OPENCL_C_VERSION)
}
/// Returns the parent device to which this sub-device belongs. If device is a root-level device, a ```None``` value is returned.
#[docfg(feature = "cl1_2")]
#[inline]
pub fn parent(&self) -> Result<Option<RawDevice>> {
let v = self.get_info_bits::<cl_device_id>(opencl_sys::CL_DEVICE_PARENT_DEVICE)?;
if let Some(v) = NonNull::new(v) {
return Ok(Some(Self(v)));
}
Ok(None)
}
/// Returns the list of supported affinity domains for partitioning the device.
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn partition_affinity_domain(&self) -> Result<Option<AffinityDomain>> {
let v = self.get_info_bits::<opencl_sys::cl_device_affinity_domain>(
opencl_sys::CL_DEVICE_PARTITION_PROPERTIES,
)?;
Ok(match v {
0 => None,
_ => unsafe { Some(core::mem::transmute(v)) },
})
}
/// Returns the properties argument specified in clCreateSubDevices if device is a sub-device.
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn partition_type(&self) -> Result<Option<PartitionProperty>> {
let v = self.get_info_array::<opencl_sys::cl_device_partition_property>(
opencl_sys::CL_DEVICE_PARTITION_TYPE,
)?;
Ok(PartitionProperty::from_slice(&v))
}
/// Returns the maximum number of sub-devices that can be created when a device is partitioned. The value returned cannot exceed [max_compute_units](RawDevice::max_compute_units).
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn partition_max_sub_devices(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PARTITION_MAX_SUB_DEVICES)
}
/// Returns the list of partition types supported by device.
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn partition_properties(&self) -> Result<Option<PartitionProperty>> {
let v = self.get_info_array::<opencl_sys::cl_device_partition_property>(
opencl_sys::CL_DEVICE_PARTITION_PROPERTIES,
)?;
Ok(PartitionProperty::from_slice(&v))
}
/// Is ```true``` if the device supports pipes, and ```false``` otherwise. Devices that return ```true``` must also return ```true``` for [`generic_address_space_support`](RawDevice::generic_address_space_support).
#[docfg(feature = "cl3")]
#[inline(always)]
pub fn pipe_support(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(opencl_sys::CL_DEVICE_PIPE_SUPPORT)?;
Ok(v != 0)
}
/// The maximum number of reservations that can be active for a pipe per work-item in a kernel. A work-group reservation is counted as one reservation per work-item. The minimum value is 1 for devices supporting pipes, and must be 0 for devices that do not support pipes.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn pipe_max_active_reservations(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits(opencl_sys::CL_DEVICE_PIPE_MAX_ACTIVE_RESERVATIONS)
.map(NonZeroU32::new)
}
/// The maximum size of pipe packet in bytes. Support for pipes is required for an OpenCL 2.0, 2.1, or 2.2 device. The minimum value is 1024 bytes if the device supports pipes, and must be 0 for devices that do not support pipes.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn pipe_max_packet_size(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits(opencl_sys::CL_DEVICE_PIPE_MAX_PACKET_SIZE)
.map(NonZeroU32::new)
}
/// The platform associated with this device.
#[inline(always)]
pub fn platform(&self) -> Result<RawPlatform> {
let id = self.get_info_bits::<cl_platform_id>(CL_DEVICE_PLATFORM)?;
unsafe { return RawPlatform::from_id(id).ok_or_else(|| ErrorKind::InvalidPlatform.into()) }
}
/// Is ```true``` if the devices preference is for the user to be responsible for synchronization, when sharing memory objects between OpenCL and other APIs such as DirectX, ```false``` if the device / implementation has a performant path for performing synchronization of memory object shared between OpenCL and other APIs such as DirectX.
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn preferred_interop_user_sync(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(opencl_sys::CL_DEVICE_PREFERRED_INTEROP_USER_SYNC)?;
Ok(v != 0)
}
/// Returns the value representing the preferred alignment in bytes for OpenCL 2.0 fine-grained SVM atomic types. This query can return 0 which indicates that the preferred alignment is aligned to the natural size of the type.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn preferred_platform_atomic_alignment(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_PLATFORM_ATOMIC_ALIGNMENT)
}
/// Returns the value representing the preferred alignment in bytes for OpenCL 2.0 atomic types to global memory. This query can return 0 which indicates that the preferred alignment is aligned to the natural size of the type.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn preferred_global_atomic_alignment(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_GLOBAL_ATOMIC_ALIGNMENT)
}
/// Returns the value representing the preferred alignment in bytes for OpenCL 2.0 atomic types to local memory. This query can return 0 which indicates that the preferred alignment is aligned to the natural size of the type.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn preferred_local_atomic_alignment(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_LOCAL_ATOMIC_ALIGNMENT)
}
/// Preferred native vector width size for built-in scalar types that can be put into vectors. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn preferred_vector_width_char(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR)
}
/// Preferred native vector width size for built-in scalar types that can be put into vectors. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn preferred_vector_width_short(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT)
}
/// Preferred native vector width size for built-in scalar types that can be put into vectors. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn preferred_vector_width_int(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT)
}
/// Preferred native vector width size for built-in scalar types that can be put into vectors. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn preferred_vector_width_long(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG)
}
/// Preferred native vector width size for built-in scalar types that can be put into vectors. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn preferred_vector_width_half(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF)
}
/// Preferred native vector width size for built-in scalar types that can be put into vectors. The vector width is defined as the number of scalar elements that can be stored in the vector.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn preferred_vector_width_float(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT)
}
/// Preferred native vector width size for built-in scalar types that can be put into vectors. The vector width is defined as the number of scalar elements that can be stored in the vector. if the ```cl_khr_fp64``` extension is not supported, it must return 0.
#[docfg(feature = "cl1_1")]
#[inline(always)]
pub fn preferred_vector_width_double(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE)
}
/// Returns the preferred multiple of work-group size for the given device. This is a performance hint intended as a guide when specifying the local work size argument to clEnqueueNDRangeKernel.
#[docfg(feature = "cl3")]
#[inline(always)]
pub fn preferred_work_group_size_multiple(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_PREFERRED_WORK_GROUP_SIZE_MULTIPLE)
}
/// Maximum size in bytes of the internal buffer that holds the output of printf calls from a kernel. The minimum value for the FULL profile is 1 MB.
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn printf_buffer_size(&self) -> Result<NonZeroUsize> {
self.get_info_bits(opencl_sys::CL_DEVICE_PRINTF_BUFFER_SIZE)
.map(NonZeroUsize::new)
.map(Option::unwrap)
}
/// OpenCL profile string. Returns the profile name supported by the device (see note)
#[inline(always)]
pub fn profile(&self) -> String {
self.get_info_string(CL_DEVICE_PROFILE).unwrap()
}
/// Describes the resolution of device timer. This is measured in nanoseconds.
#[inline(always)]
pub fn profiling_timer_resolution(&self) -> Result<usize> {
self.get_info_bits(CL_DEVICE_PROFILING_TIMER_RESOLUTION)
}
/// Describes the command-queue properties supported by the device.
#[cfg_attr(feature = "cl2", deprecated(note = "see `queue_on_host_properties`"))]
#[inline(always)]
pub fn queue_properties(&self) -> Result<CommandQueueProperties> {
let v = self.get_info_bits::<cl_command_queue_properties>(CL_DEVICE_QUEUE_PROPERTIES)?;
Ok(CommandQueueProperties::from_bits(v))
}
/// Describes the on device command-queue properties supported by the device.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn queue_on_device_properties(&self) -> Result<CommandQueueProperties> {
let v = self.get_info_bits::<cl_command_queue_properties>(
opencl_sys::CL_DEVICE_QUEUE_ON_DEVICE_PROPERTIES,
)?;
Ok(CommandQueueProperties::from_bits(v))
}
/// The maximum size of the device queue in bytes. The minimum value is 256 KB for the full profile and 64 KB for the embedded profile for devices supporting on-device queues, and must be 0 for devices that do not support on-device queues.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn queue_on_device_max_size(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits(opencl_sys::CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE)
.map(NonZeroU32::new)
}
/// The preferred size of the device queue, in bytes. Applications should use this size for the device queue to ensure good performance. The minimum value is 16 KB for devices supporting on-device queues, and must be 0 for devices that do not support on-device queues.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn queue_on_device_preferred_size(&self) -> Result<Option<NonZeroU32>> {
self.get_info_bits(opencl_sys::CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE)
.map(NonZeroU32::new)
}
/// Describes the on host command-queue properties supported by the device.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn queue_on_host_properties(&self) -> Result<CommandQueueProperties> {
let v = self.get_info_bits::<cl_command_queue_properties>(
opencl_sys::CL_DEVICE_QUEUE_ON_HOST_PROPERTIES,
)?;
Ok(CommandQueueProperties::from_bits(v))
}
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub fn reference_count(&self) -> Result<u32> {
self.get_info_bits(opencl_sys::CL_DEVICE_REFERENCE_COUNT)
}
/// Describes single precision floating-point capability of the device.
#[inline(always)]
pub fn single_fp_config(&self) -> Result<FpConfig> {
self.get_info_bits(CL_DEVICE_SINGLE_FP_CONFIG)
}
#[docfg(feature = "cl2_1")]
#[inline(always)]
pub fn sub_group_independent_forward_progress(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(
opencl_sys::CL_DEVICE_SUB_GROUP_INDEPENDENT_FORWARD_PROGRESS,
)?;
Ok(v != 0)
}
/// Describes the various shared virtual memory (SVM) memory allocation types the device supports.
#[docfg(feature = "cl2")]
#[inline(always)]
pub fn svm_capabilities(&self) -> Result<SvmCapability> {
self.get_info_bits(opencl_sys::CL_DEVICE_SVM_CAPABILITIES)
}
/// The OpenCL device type.
#[inline(always)]
pub fn ty(&self) -> Result<DeviceType> {
self.get_info_bits(CL_DEVICE_TYPE)
}
/// Vendor name string.
#[inline(always)]
pub fn vendor(&self) -> Result<String> {
self.get_info_string(CL_DEVICE_VENDOR)
}
/// A unique device vendor identifier. An example of a unique device identifier could be the PCIe ID.
#[inline(always)]
pub fn vendor_id(&self) -> Result<u32> {
self.get_info_bits(CL_DEVICE_VENDOR_ID)
}
/// OpenCL version string.
#[inline(always)]
pub fn version_string(&self) -> Result<String> {
self.get_info_string(CL_DEVICE_VERSION)
}
/// OpenCL version
#[inline]
pub fn version(&self) -> Result<Version> {
let version = self.version_string()?;
let section = version.split(' ').nth(1).ok_or(ErrorKind::InvalidValue)?;
Version::from_str(section).map_err(|_| ErrorKind::InvalidValue.into())
}
/// Is ```true``` if the device supports work-group collective functions (e.g. work_group_broadcast, work_group_reduce and work_group_scan), and ```false``` otherwise.
#[docfg(feature = "cl3")]
#[inline(always)]
pub fn work_group_collective_functions_support(&self) -> Result<bool> {
let v = self.get_info_bits::<cl_bool>(
opencl_sys::CL_DEVICE_WORK_GROUP_COLLECTIVE_FUNCTIONS_SUPPORT,
)?;
Ok(v != 0)
}
/// OpenCL software driver version string in the form _major_number_._minor_number_.
#[inline(always)]
pub fn driver_version_string(&self) -> Result<String> {
self.get_info_string(CL_DRIVER_VERSION)
}
/// OpenCL software driver version
#[inline(always)]
pub fn driver_version(&self) -> Result<Version> {
let driver = self.driver_version_string()?;
Version::from_str(&driver).map_err(|_| ErrorKind::InvalidValue.into())
}
/// Creates an array of sub-devices that each reference a non-intersecting set of compute units within in_device, according to the partition scheme given by properties.
/// The output sub-devices may be used in every way that the root (or parent) device can be used, including creating contexts, building programs, further calls to [`create_sub_devices`](RawDevice::create_sub_devices) and creating command-queues.
/// When a command-queue is created against a sub-device, the commands enqueued on the queue are executed only on the sub-device.
#[docfg(feature = "cl1_2")]
#[inline]
pub fn create_sub_devices(&self, prop: PartitionProperty) -> Result<Vec<RawDevice>> {
let prop = prop.to_bits();
let mut len = 0;
unsafe {
tri!(opencl_sys::clCreateSubDevices(
self.id(),
prop.as_ptr(),
0,
core::ptr::null_mut(),
std::ptr::addr_of_mut!(len)
))
}
let mut devices = Vec::with_capacity(len as usize);
unsafe {
tri!(opencl_sys::clCreateSubDevices(
self.id(),
prop.as_ptr(),
len,
devices.as_mut_ptr() as *mut _,
core::ptr::null_mut()
));
devices.set_len(devices.capacity())
}
Ok(devices)
}
/// Replaces the default command queue on the device.
#[docfg(feature = "cl2_1")]
#[inline(always)]
pub fn set_default_command_queue(
&self,
ctx: crate::context::RawContext,
queue: RawCommandQueue,
) -> Result<()> {
unsafe {
tri!(opencl_sys::clSetDefaultDeviceCommandQueue(
ctx.id(),
self.id(),
queue.id()
));
}
Ok(())
}
/// Query synchronized host and device timestamps.
#[docfg(feature = "cl2_1")]
#[inline]
pub fn device_and_host_timer_nanos(&self) -> Result<[u64; 2]> {
let mut device = 0;
let mut host = 0;
unsafe {
tri!(clGetDeviceAndHostTimer(
self.id(),
std::ptr::addr_of_mut!(device),
std::ptr::addr_of_mut!(host)
))
}
Ok([device, host])
}
/// Query synchronized host and device timestamps.
#[docfg(feature = "cl2_1")]
#[inline(always)]
pub fn device_and_host_timer(&self) -> Result<(std::time::SystemTime, std::time::SystemTime)> {
let [device, host] = self.device_and_host_timer_nanos()?;
let device = std::time::UNIX_EPOCH
.checked_add(std::time::Duration::from_nanos(device))
.unwrap();
let host = std::time::UNIX_EPOCH
.checked_add(std::time::Duration::from_nanos(host))
.unwrap();
Ok((device, host))
}
/// Query the host clock.
#[docfg(feature = "cl2_1")]
#[inline(always)]
pub fn host_clock_nanos(&self) -> Result<u64> {
let mut host = 0;
unsafe { tri!(clGetHostTimer(self.id(), std::ptr::addr_of_mut!(host))) }
Ok(host)
}
/// Query the host clock.
#[docfg(feature = "cl2_1")]
#[inline(always)]
pub fn host_clock(&self) -> Result<std::time::SystemTime> {
let host = self.host_clock_nanos()?;
Ok(std::time::UNIX_EPOCH + std::time::Duration::from_nanos(host))
}
#[inline(always)]
pub fn has_f16(&self) -> Result<bool> {
let ext = self.extensions_string()?;
Ok(ext.split_whitespace().any(|x| x == "cl_khr_fp16"))
}
#[inline(always)]
pub fn has_f64(&self) -> Result<bool> {
let ext = self.extensions_string()?;
Ok(ext.split_whitespace().any(|x| x == "cl_khr_fp64"))
}
#[inline(always)]
pub fn all() -> &'static [RawDevice] {
&once_cell::sync::Lazy::force(&DEVICES)
}
#[inline(always)]
pub fn first() -> Option<&'static RawDevice> {
DEVICES.first()
}
#[docfg(feature = "cl1_2")]
#[inline(always)]
pub unsafe fn retain(&self) -> Result<()> {
tri!(clRetainDevice(self.id()));
Ok(())
}
#[inline]
fn get_info_string(&self, ty: cl_device_info) -> Result<String> {
unsafe {
let mut len = 0;
tri!(clGetDeviceInfo(
self.id(),
ty,
0,
core::ptr::null_mut(),
&mut len
));
let mut result = Vec::<u8>::with_capacity(len);
tri!(clGetDeviceInfo(
self.id(),
ty,
len,
result.as_mut_ptr().cast(),
core::ptr::null_mut()
));
result.set_len(len - 1);
Ok(String::from_utf8(result).unwrap())
}
}
#[allow(dead_code)]
#[inline]
fn get_info_array<T: Copy>(&self, ty: cl_device_info) -> Result<Box<[T]>> {
unsafe {
let mut len = 0;
tri!(clGetDeviceInfo(
self.id(),
ty,
0,
core::ptr::null_mut(),
&mut len
));
if len == 0 {
return Ok(Box::new([]));
}
let mut result;
cfg_if::cfg_if! {
if #[cfg(feature = "nightly")] {
result = Box::<[T]>::new_uninit_slice(len / core::mem::size_of::<T>());
} else {
let mut vec = Vec::<MaybeUninit<T>>::with_capacity(len / core::mem::size_of::<T>());
vec.set_len(vec.capacity());
result = vec.into_boxed_slice();
}
}
tri!(clGetDeviceInfo(
self.id(),
ty,
len,
result.as_mut_ptr().cast(),
core::ptr::null_mut()
));
cfg_if::cfg_if! {
if #[cfg(feature = "nightly")] {
Ok(result.assume_init())
} else {
Ok(Box::from_raw(Box::into_raw(result) as *mut [T]))
}
}
}
}
#[inline]
fn get_info_bits<T: Copy>(&self, ty: cl_device_info) -> Result<T> {
let mut value = MaybeUninit::<T>::uninit();
unsafe {
tri!(clGetDeviceInfo(
self.id(),
ty,
core::mem::size_of::<T>(),
value.as_mut_ptr().cast(),
core::ptr::null_mut()
));
Ok(value.assume_init())
}
}
}
impl Debug for RawDevice {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("Device")
.field("id", &self.0)
.field("name", &self.name())
.field("vendor", &self.vendor())
.field("type", &self.ty())
.field("version", &self.version())
.finish()
}
}
impl Clone for RawDevice {
#[inline(always)]
fn clone(&self) -> Self {
#[cfg(feature = "cl1_2")]
unsafe {
tri_panic!(opencl_sys::clRetainDevice(self.id()))
}
Self(self.0)
}
}
#[docfg(feature = "cl1_2")]
impl Drop for RawDevice {
#[inline(always)]
fn drop(&mut self) {
unsafe {
tri_panic!(opencl_sys::clReleaseDevice(self.id()));
}
}
}
unsafe impl Send for RawDevice {}
unsafe impl Sync for RawDevice {}
#[docfg(feature = "cl3")]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub struct AtomicCapabilities {
pub order: core::sync::atomic::Ordering,
/// Support for memory ordering constraints that apply to a single work-item.
pub work_item_scope: bool,
pub scope: AtomicScope,
}
#[docfg(feature = "cl3")]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
#[repr(u64)]
pub enum AtomicScope {
/// Support for memory ordering constraints that apply to all work-items in a work-group.
WorkGroup = opencl_sys::CL_DEVICE_ATOMIC_SCOPE_WORK_GROUP,
/// Support for memory ordering constraints that apply to all work-items executing on the device.
Device = opencl_sys::CL_DEVICE_ATOMIC_SCOPE_DEVICE,
/// Support for memory ordering constraints that apply to all work-items executing across all devices that can share SVM memory with each other and the host process.
AllDevices = opencl_sys::CL_DEVICE_ATOMIC_SCOPE_ALL_DEVICES,
}
#[cfg(feature = "cl3")]
impl AtomicCapabilities {
pub fn from_bits(bits: opencl_sys::cl_device_atomic_capabilities) -> Option<Self> {
let order;
let scope;
let work_item_scope = bits & opencl_sys::CL_DEVICE_ATOMIC_SCOPE_WORK_ITEM != 0;
// ORDER
if bits & opencl_sys::CL_DEVICE_ATOMIC_ORDER_SEQ_CST != 0 {
order = core::sync::atomic::Ordering::SeqCst;
} else if bits & opencl_sys::CL_DEVICE_ATOMIC_ORDER_ACQ_REL != 0 {
order = core::sync::atomic::Ordering::AcqRel
} else if bits & opencl_sys::CL_DEVICE_ATOMIC_ORDER_RELAXED != 0 {
order = core::sync::atomic::Ordering::Relaxed
} else {
return None;
}
// SCOPE
if bits & opencl_sys::CL_DEVICE_ATOMIC_SCOPE_ALL_DEVICES != 0 {
scope = AtomicScope::AllDevices
} else if bits & opencl_sys::CL_DEVICE_ATOMIC_SCOPE_DEVICE != 0 {
scope = AtomicScope::Device
} else if bits & opencl_sys::CL_DEVICE_ATOMIC_SCOPE_WORK_GROUP != 0 {
scope = AtomicScope::WorkGroup
} else {
return None;
}
Some(Self {
order,
work_item_scope,
scope,
})
}
}
bitflags::bitflags! {
/// The OpenCL device type.
#[repr(transparent)]
pub struct DeviceType : cl_device_type {
const CPU = CL_DEVICE_TYPE_CPU;
const GPU = CL_DEVICE_TYPE_GPU;
const ACCELERATOR = CL_DEVICE_TYPE_ACCELERATOR;
const DEFAULT = CL_DEVICE_TYPE_CUSTOM;
}
/// Describes the floating-point capability of the OpenCL device.
#[repr(transparent)]
pub struct FpConfig : cl_device_fp_config {
/// Denorms are supported
const DENORM = CL_FP_DENORM;
/// INF and quiet NaNs are supported
const INF_NAN = CL_FP_INF_NAN;
/// Round to nearest even rounding mode supported
const ROUND_TO_NEAREST = CL_FP_ROUND_TO_NEAREST;
/// Round to zero rounding mode supported
const ROUND_TO_ZERO = CL_FP_ROUND_TO_ZERO;
/// Round to positive and negative infinity rounding modes supported
const ROUND_TO_INF = CL_FP_ROUND_TO_INF;
/// IEEE754-2008 fused multiply-add is supported
const FMA = CL_FP_FMA;
/// Divide and sqrt are correctly rounded as defined by the IEEE754 specification
const CORRECTLY_ROUNDED_DIVIDE_SQRT = CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT;
/// Basic floating-point operations (such as addition, subtraction, multiplication) are implemented in software
const SOFT_FLOAT = CL_FP_SOFT_FLOAT;
}
/// Describes the execution capabilities of the device
#[repr(transparent)]
pub struct ExecCapabilities : cl_device_exec_capabilities {
const KERNEL = CL_EXEC_KERNEL;
const NATIVE_KERNEL = CL_EXEC_NATIVE_KERNEL;
}
}
/// Type of local memory supported. This can be set to [```Self::Local```] implying dedicated local memory storage such as SRAM, or [```Self::Global```].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum LocalMemType {
Local = CL_LOCAL,
Global = CL_GLOBAL,
}
#[docfg(feature = "cl1_2")]
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum PartitionProperty {
/// Split the aggregate device into as many smaller aggregate devices as can be created, each containing n compute units. The value n is passed as the value accompanying this property. If n does not divide evenly into [`max_compute_units`](RawDevice::max_compute_units), then the remaining compute units are not used.
Equally(u32),
/// This property is followed by a list of compute unit. For each non-zero count m in the list, a sub-device is created with m compute units in it. The number of non-zero count entries in the list may not exceed [`partition_max_sub_devices`](RawDevice::partition_max_sub_devices). The total number of compute units specified may not exceed [max_compute_units](RawDevice::max_compute_units).
Counts(Vec<NonZeroU32>),
/// Split the device into smaller aggregate devices containing one or more compute units that all share part of a cache hierarchy.
AffinityDomain(AffinityDomain),
}
#[cfg(feature = "cl1_2")]
impl PartitionProperty {
pub fn from_slice(bits: &[opencl_sys::cl_device_partition_property]) -> Option<Self> {
if bits.len() == 0 {
return None;
}
match unsafe { *bits.get_unchecked(0) } {
0 => None,
opencl_sys::CL_DEVICE_PARTITION_EQUALLY => Some(Self::Equally(bits[1] as u32)),
opencl_sys::CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN => {
Some(Self::AffinityDomain(unsafe {
core::mem::transmute(bits[1] as u64)
}))
}
opencl_sys::CL_DEVICE_PARTITION_BY_COUNTS => {
let mut result = Vec::with_capacity(bits.len());
for i in 1..bits.len() {
const MAX_COUNT: isize = u32::MAX as isize;
match bits[i] {
#[allow(unreachable_patterns)]
0 | opencl_sys::CL_DEVICE_PARTITION_BY_COUNTS_LIST_END => break,
v @ 1..=MAX_COUNT => unsafe {
result.push(NonZeroU32::new_unchecked(v as u32))
},
_ => return None,
}
}
Some(Self::Counts(result))
}
other => panic!("Unknow partition property '{other}'"),
}
}
pub fn to_bits(&self) -> Box<[opencl_sys::cl_device_partition_property]> {
match self {
Self::Equally(n) => Box::new([
opencl_sys::CL_DEVICE_PARTITION_EQUALLY,
opencl_sys::cl_device_partition_property::try_from(*n).unwrap(),
0,
]) as Box<_>,
Self::AffinityDomain(x) => Box::new([
opencl_sys::CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN,
opencl_sys::cl_device_partition_property::try_from(*x as u64).unwrap(),
0,
]) as Box<_>,
Self::Counts(x) => {
let mut result = Vec::<MaybeUninit<_>>::with_capacity(2 * x.len());
unsafe { result.set_len(result.capacity()) };
let mut result = result.into_boxed_slice();
unsafe {
result[0].write(opencl_sys::CL_DEVICE_PARTITION_BY_COUNTS);
for i in 0..x.len() {
result[1 + i].write(
opencl_sys::cl_device_partition_property::try_from(x[i].get()).unwrap(),
);
}
result
.last_mut()
.unwrap_unchecked()
.write(opencl_sys::CL_DEVICE_PARTITION_BY_COUNTS_LIST_END);
Box::from_raw(Box::into_raw(result) as *mut [_])
// result.assume_init()
}
}
}
}
}
#[docfg(feature = "cl1_2")]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[repr(u64)]
#[non_exhaustive]
pub enum AffinityDomain {
/// Split the device into sub-devices comprised of compute units that share a NUMA node.
Numa = opencl_sys::CL_DEVICE_AFFINITY_DOMAIN_NUMA,
/// Split the device into sub-devices comprised of compute units that share a level 4 data cache.
L4Cache = opencl_sys::CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE,
/// Split the device into sub-devices comprised of compute units that share a level 3 data cache.
L3Cache = opencl_sys::CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE,
/// Split the device into sub-devices comprised of compute units that share a level 2 data cache.
L2Cache = opencl_sys::CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE,
/// Split the device into sub-devices comprised of compute units that share a level 1 data cache.
L1Cache = opencl_sys::CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE,
/// Split the device along the next partitionable affinity domain. The implementation shall find the first level along which the device or sub-device may be further subdivided in the order NUMA, L4, L3, L2, L1, and partition the device into sub-devices comprised of compute units that share memory subsystems at this level.
NextPartitionable = opencl_sys::CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE,
}
#[docfg(feature = "cl3")]
#[repr(u64)]
#[non_exhaustive]
pub enum DeviceEnqueueCapabilities {
/// Device supports device-side enqueue and on-device queues.
Supported = opencl_sys::CL_DEVICE_QUEUE_SUPPORTED,
/// Device supports a replaceable default on-device queue.
ReplaceableDefault = opencl_sys::CL_DEVICE_QUEUE_REPLACEABLE_DEFAULT,
}
#[cfg(feature = "cl3")]
impl DeviceEnqueueCapabilities {
pub fn from_bits(bits: opencl_sys::cl_device_device_enqueue_capabilities) -> Option<Self> {
if bits & opencl_sys::CL_DEVICE_QUEUE_REPLACEABLE_DEFAULT != 0 {
return Some(Self::ReplaceableDefault);
}
if bits & opencl_sys::CL_DEVICE_QUEUE_SUPPORTED != 0 {
return Some(Self::Supported);
}
None
}
}
bitflags::bitflags! {
#[repr(transparent)]
pub struct SvmCapability: cl_device_svm_capabilities {
/// Support for coarse-grain buffer sharing using clSVMAlloc. Memory consistency is guaranteed at synchronization points and the host must use calls to clEnqueueMapBuffer and clEnqueueUnmapMemObject.
const COARSE_GRAIN_BUFFER = CL_DEVICE_SVM_COARSE_GRAIN_BUFFER;
/// Support for fine-grain buffer sharing using clSVMAlloc. Memory consistency is guaranteed atsynchronization points without need for clEnqueueMapBuffer and clEnqueueUnmapMemObject.
const FINE_GRAIN_BUFFER = CL_DEVICE_SVM_FINE_GRAIN_BUFFER;
/// Support for sharing the host’s entire virtual memory including memory allocated using malloc. Memory consistency is guaranteed at synchronization points.
const FINE_GRAIN_SYSTEM = CL_DEVICE_SVM_FINE_GRAIN_SYSTEM;
/// Support for the OpenCL 2.0 atomic operations that provide memory consistency across the host and all OpenCL devices supporting fine-grain SVM allocations.
const ATOMICS = CL_DEVICE_SVM_ATOMICS;
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct Version(cl_version);
impl Version {
pub const CL1: Self = Self::from_inner_parts(1, 0, 0);
pub const CL1_1: Self = Self::from_inner_parts(1, 1, 0);
pub const CL1_2: Self = Self::from_inner_parts(1, 2, 0);
pub const CL2: Self = Self::from_inner_parts(2, 0, 0);
pub const CL2_1: Self = Self::from_inner_parts(2, 1, 0);
pub const CL2_2: Self = Self::from_inner_parts(2, 2, 0);
pub const CL3: Self = Self::from_inner_parts(3, 0, 0);
const MAJOR: u32 = CL_VERSION_MINOR_BITS + CL_VERSION_PATCH_BITS;
#[inline(always)]
pub const fn from_bits(bits: u32) -> Self {
Self(bits)
}
#[inline(always)]
pub const fn from_inner_parts(major: u32, minor: u32, patch: u32) -> Self {
Self(
((major & CL_VERSION_MAJOR_MASK) << Self::MAJOR)
| ((minor & CL_VERSION_MINOR_MASK) << CL_VERSION_PATCH_BITS)
| (patch & CL_VERSION_PATCH_MASK),
)
}
#[inline(always)]
pub const fn into_inner_parts(self) -> (u32, u32, u32) {
(self.major(), self.minor(), self.patch())
}
#[inline(always)]
pub const fn major(&self) -> u32 {
self.0 >> Self::MAJOR
}
#[inline(always)]
pub const fn minor(&self) -> u32 {
(self.0 >> CL_VERSION_PATCH_BITS) & CL_VERSION_MINOR_MASK
}
#[inline(always)]
pub const fn patch(&self) -> u32 {
self.0 & CL_VERSION_PATCH_MASK
}
}
impl FromStr for Version {
type Err = IntErrorKind;
fn from_str(s: &str) -> core::result::Result<Self, Self::Err> {
let mut parts = s.split('.');
let major = parts
.next()
.ok_or(IntErrorKind::Empty)?
.parse::<u32>()
.map_err(|e| e.kind().clone())?;
let minor = parts
.next()
.ok_or(IntErrorKind::Empty)?
.parse::<u32>()
.map_err(|e| e.kind().clone())?;
let patch_str = parts.next();
let patch;
if let Some(inner) = patch_str {
patch = Some(inner.parse::<u32>().map_err(|e| e.kind().clone())?)
} else {
patch = None;
}
if parts.next().is_some() {
return Err(IntErrorKind::InvalidDigit);
}
Ok(Self::from_inner_parts(
major,
minor,
patch.unwrap_or_default(),
))
}
}
impl Debug for Version {
#[inline(always)]
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
Display::fmt(&self, f)
}
}
impl Display for Version {
#[inline(always)]
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "{}.{}.{}", self.major(), self.minor(), self.patch())
}
}