1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
#![feature(portable_simd)]
#![feature(stdsimd)]
#![feature(repr_simd)]
#![feature(array_windows)]
#![allow(dead_code)]
use arrayvec::{ArrayString, ArrayVec};
use fallback::compress_in_place;
use std::{cmp, fmt};
use crate::arith::hash_many;
pub mod arith;
pub mod fallback;
mod join;
pub mod reference_impl;
#[cfg(test)]
mod test;
#[macro_export]
macro_rules! array_mut_ref {
($arr:expr, $offset:expr, $len:expr) => {{
{
#[inline]
unsafe fn as_array<T>(slice: &mut [T]) -> &mut [T; $len] {
&mut *(slice.as_mut_ptr() as *mut [_; $len])
}
let offset = $offset;
let slice = &mut $arr[offset..offset + $len];
#[allow(unused_unsafe)]
unsafe {
as_array(slice)
}
}
}};
}
#[macro_export]
macro_rules! array_ref {
($arr:expr, $offset:expr, $len:expr) => {{
{
#[inline]
unsafe fn as_array<T>(slice: &[T]) -> &[T; $len] {
&*(slice.as_ptr() as *const [_; $len])
}
let offset = $offset;
let slice = &$arr[offset..offset + $len];
#[allow(unused_unsafe)]
unsafe {
as_array(slice)
}
}
}};
}
const MAX_DEPTH: usize = 54;
const MSG_SCHEDULE: [[usize; 16]; 7] = [
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
[2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8],
[3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1],
[10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6],
[12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4],
[9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7],
[11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13],
];
const CHUNK_START: u8 = 1 << 0;
const CHUNK_END: u8 = 1 << 1;
const PARENT: u8 = 1 << 2;
const ROOT: u8 = 1 << 3;
const KEYED_HASH: u8 = 1 << 4;
const DERIVE_KEY_CONTEXT: u8 = 1 << 5;
const DERIVE_KEY_MATERIAL: u8 = 1 << 6;
type CVWords = [u32; 8];
type CVBytes = [u8; 32];
const IV: &CVWords = &[
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
];
pub const BLOCK_LEN: usize = 64;
pub const CHUNK_LEN: usize = 1024;
pub const KEY_LEN: usize = 32;
pub const OUT_LEN: usize = 32;
#[inline(always)]
pub fn words_from_le_bytes_32(bytes: &[u8; 32]) -> [u32; 8] {
let mut out = [0; 8];
out[0] = u32::from_le_bytes(*array_ref!(bytes, 0 * 4, 4));
out[1] = u32::from_le_bytes(*array_ref!(bytes, 1 * 4, 4));
out[2] = u32::from_le_bytes(*array_ref!(bytes, 2 * 4, 4));
out[3] = u32::from_le_bytes(*array_ref!(bytes, 3 * 4, 4));
out[4] = u32::from_le_bytes(*array_ref!(bytes, 4 * 4, 4));
out[5] = u32::from_le_bytes(*array_ref!(bytes, 5 * 4, 4));
out[6] = u32::from_le_bytes(*array_ref!(bytes, 6 * 4, 4));
out[7] = u32::from_le_bytes(*array_ref!(bytes, 7 * 4, 4));
out
}
#[inline(always)]
pub fn words_from_le_bytes_64(bytes: &[u8; 64]) -> [u32; 16] {
let mut out = [0; 16];
out[0] = u32::from_le_bytes(*array_ref!(bytes, 0 * 4, 4));
out[1] = u32::from_le_bytes(*array_ref!(bytes, 1 * 4, 4));
out[2] = u32::from_le_bytes(*array_ref!(bytes, 2 * 4, 4));
out[3] = u32::from_le_bytes(*array_ref!(bytes, 3 * 4, 4));
out[4] = u32::from_le_bytes(*array_ref!(bytes, 4 * 4, 4));
out[5] = u32::from_le_bytes(*array_ref!(bytes, 5 * 4, 4));
out[6] = u32::from_le_bytes(*array_ref!(bytes, 6 * 4, 4));
out[7] = u32::from_le_bytes(*array_ref!(bytes, 7 * 4, 4));
out[8] = u32::from_le_bytes(*array_ref!(bytes, 8 * 4, 4));
out[9] = u32::from_le_bytes(*array_ref!(bytes, 9 * 4, 4));
out[10] = u32::from_le_bytes(*array_ref!(bytes, 10 * 4, 4));
out[11] = u32::from_le_bytes(*array_ref!(bytes, 11 * 4, 4));
out[12] = u32::from_le_bytes(*array_ref!(bytes, 12 * 4, 4));
out[13] = u32::from_le_bytes(*array_ref!(bytes, 13 * 4, 4));
out[14] = u32::from_le_bytes(*array_ref!(bytes, 14 * 4, 4));
out[15] = u32::from_le_bytes(*array_ref!(bytes, 15 * 4, 4));
out
}
#[inline(always)]
pub fn le_bytes_from_words_32(words: &[u32; 8]) -> [u8; 32] {
let mut out = [0; 32];
*array_mut_ref!(out, 0 * 4, 4) = words[0].to_le_bytes();
*array_mut_ref!(out, 1 * 4, 4) = words[1].to_le_bytes();
*array_mut_ref!(out, 2 * 4, 4) = words[2].to_le_bytes();
*array_mut_ref!(out, 3 * 4, 4) = words[3].to_le_bytes();
*array_mut_ref!(out, 4 * 4, 4) = words[4].to_le_bytes();
*array_mut_ref!(out, 5 * 4, 4) = words[5].to_le_bytes();
*array_mut_ref!(out, 6 * 4, 4) = words[6].to_le_bytes();
*array_mut_ref!(out, 7 * 4, 4) = words[7].to_le_bytes();
out
}
#[inline(always)]
pub fn le_bytes_from_words_64(words: &[u32; 16]) -> [u8; 64] {
let mut out = [0; 64];
*array_mut_ref!(out, 0 * 4, 4) = words[0].to_le_bytes();
*array_mut_ref!(out, 1 * 4, 4) = words[1].to_le_bytes();
*array_mut_ref!(out, 2 * 4, 4) = words[2].to_le_bytes();
*array_mut_ref!(out, 3 * 4, 4) = words[3].to_le_bytes();
*array_mut_ref!(out, 4 * 4, 4) = words[4].to_le_bytes();
*array_mut_ref!(out, 5 * 4, 4) = words[5].to_le_bytes();
*array_mut_ref!(out, 6 * 4, 4) = words[6].to_le_bytes();
*array_mut_ref!(out, 7 * 4, 4) = words[7].to_le_bytes();
*array_mut_ref!(out, 8 * 4, 4) = words[8].to_le_bytes();
*array_mut_ref!(out, 9 * 4, 4) = words[9].to_le_bytes();
*array_mut_ref!(out, 10 * 4, 4) = words[10].to_le_bytes();
*array_mut_ref!(out, 11 * 4, 4) = words[11].to_le_bytes();
*array_mut_ref!(out, 12 * 4, 4) = words[12].to_le_bytes();
out
}
#[derive(Clone, Copy, Hash)]
pub struct Hash([u8; OUT_LEN]);
impl Hash {
#[inline]
pub fn as_bytes(&self) -> &[u8; OUT_LEN] {
&self.0
}
pub fn to_hex(&self) -> ArrayString<{ 2 * OUT_LEN }> {
let mut s = ArrayString::new();
let table = b"0123456789abcdef";
for &b in self.0.iter() {
s.push(table[(b >> 4) as usize] as char);
s.push(table[(b & 0xf) as usize] as char);
}
s
}
pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Self, HexError> {
fn hex_val(byte: u8) -> Result<u8, HexError> {
match byte {
b'A'..=b'F' => Ok(byte - b'A' + 10),
b'a'..=b'f' => Ok(byte - b'a' + 10),
b'0'..=b'9' => Ok(byte - b'0'),
_ => Err(HexError(HexErrorInner::InvalidByte(byte))),
}
}
let hex_bytes: &[u8] = hex.as_ref();
if hex_bytes.len() != OUT_LEN * 2 {
return Err(HexError(HexErrorInner::InvalidLen(hex_bytes.len())));
}
let mut hash_bytes: [u8; OUT_LEN] = [0; OUT_LEN];
for i in 0..OUT_LEN {
hash_bytes[i] = 16 * hex_val(hex_bytes[2 * i])? + hex_val(hex_bytes[2 * i + 1])?;
}
Ok(Hash::from(hash_bytes))
}
}
impl From<[u8; OUT_LEN]> for Hash {
#[inline]
fn from(bytes: [u8; OUT_LEN]) -> Self {
Self(bytes)
}
}
impl From<Hash> for [u8; OUT_LEN] {
#[inline]
fn from(hash: Hash) -> Self {
hash.0
}
}
impl core::str::FromStr for Hash {
type Err = HexError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Hash::from_hex(s)
}
}
impl PartialEq for Hash {
#[inline]
fn eq(&self, other: &Hash) -> bool {
{
let a = &self.0;
let b = &other.0;
({
let mut tmp = 0;
for i in 0..32 {
tmp |= a[i] ^ b[i];
}
tmp
}) == 0
}
}
}
impl PartialEq<[u8; OUT_LEN]> for Hash {
#[inline]
fn eq(&self, other: &[u8; OUT_LEN]) -> bool {
{
let a = &self.0;
({
let mut tmp = 0;
for i in 0..32 {
tmp |= a[i] ^ other[i];
}
tmp
}) == 0
}
}
}
impl PartialEq<[u8]> for Hash {
#[inline]
fn eq(&self, other: &[u8]) -> bool {
{
let a: &[u8] = &self.0;
a.len() == other.len()
&& ({
let a = a;
let b = other;
assert!(a.len() == b.len());
let len = a.len();
let a = &a[..len];
let b = &b[..len];
let mut tmp = 0;
for i in 0..len {
tmp |= a[i] ^ b[i];
}
tmp
}) == 0
}
}
}
impl Eq for Hash {}
impl fmt::Display for Hash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let hex = self.to_hex();
let hex: &str = hex.as_str();
f.write_str(hex)
}
}
impl fmt::Debug for Hash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let hex = self.to_hex();
let hex: &str = hex.as_str();
f.debug_tuple("Hash").field(&hex).finish()
}
}
#[derive(Clone, Debug)]
pub struct HexError(HexErrorInner);
#[derive(Clone, Debug)]
enum HexErrorInner {
InvalidByte(u8),
InvalidLen(usize),
}
impl fmt::Display for HexError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.0 {
HexErrorInner::InvalidByte(byte) => {
if byte < 128 {
write!(f, "invalid hex character: {:?}", byte as char)
} else {
write!(f, "invalid hex character: 0x{:x}", byte)
}
}
HexErrorInner::InvalidLen(len) => {
write!(f, "expected 64 hex bytes, received {}", len)
}
}
}
}
impl std::error::Error for HexError {}
#[derive(Clone)]
struct Output {
input_chaining_value: CVWords,
block: [u8; 64],
block_len: u8,
counter: u64,
flags: u8,
}
impl Output {
fn chaining_value(&self) -> CVBytes {
let mut cv = self.input_chaining_value;
compress_in_place(
&mut cv,
&self.block,
self.block_len,
self.counter,
self.flags,
);
le_bytes_from_words_32(&cv)
}
fn root_hash(&self) -> Hash {
debug_assert_eq!(self.counter, 0);
let mut cv = self.input_chaining_value;
fallback::compress_in_place(&mut cv, &self.block, self.block_len, 0, self.flags | ROOT);
Hash(le_bytes_from_words_32(&cv))
}
fn root_output_block(&self) -> [u8; 2 * OUT_LEN] {
fallback::compress_xof(
&self.input_chaining_value,
&self.block,
self.block_len,
self.counter,
self.flags | ROOT,
)
}
}
#[derive(Clone)]
struct ChunkState {
cv: CVWords,
chunk_counter: u64,
buf: [u8; BLOCK_LEN],
buf_len: u8,
blocks_compressed: u8,
flags: u8,
}
impl ChunkState {
fn new(key: &CVWords, chunk_counter: u64, flags: u8) -> Self {
Self {
cv: *key,
chunk_counter,
buf: [0; BLOCK_LEN],
buf_len: 0,
blocks_compressed: 0,
flags,
}
}
fn len(&self) -> usize {
BLOCK_LEN * self.blocks_compressed as usize + self.buf_len as usize
}
fn fill_buf(&mut self, input: &mut &[u8]) {
let want = BLOCK_LEN - self.buf_len as usize;
let take = std::cmp::min(want, input.len());
self.buf[self.buf_len as usize..][..take].copy_from_slice(&input[..take]);
self.buf_len += take as u8;
*input = &input[take..];
}
fn start_flag(&self) -> u8 {
if self.blocks_compressed == 0 {
CHUNK_START
} else {
0
}
}
fn update(&mut self, mut input: &[u8]) -> &mut Self {
if self.buf_len > 0 {
self.fill_buf(&mut input);
if !input.is_empty() {
debug_assert_eq!(self.buf_len as usize, BLOCK_LEN);
let block_flags = self.flags | self.start_flag();
fallback::compress_in_place(
&mut self.cv,
&self.buf,
BLOCK_LEN as u8,
self.chunk_counter,
block_flags,
);
self.buf_len = 0;
self.buf = [0; BLOCK_LEN];
self.blocks_compressed += 1;
}
}
while input.len() > BLOCK_LEN {
debug_assert_eq!(self.buf_len, 0);
let block_flags = self.flags | self.start_flag();
fallback::compress_in_place(
&mut self.cv,
array_ref!(input, 0, BLOCK_LEN),
BLOCK_LEN as u8,
self.chunk_counter,
block_flags,
);
self.blocks_compressed += 1;
input = &input[BLOCK_LEN..];
}
self.fill_buf(&mut input);
debug_assert!(input.is_empty());
debug_assert!(self.len() <= CHUNK_LEN);
self
}
fn output(&self) -> Output {
let block_flags = self.flags | self.start_flag() | CHUNK_END;
Output {
input_chaining_value: self.cv,
block: self.buf,
block_len: self.buf_len,
counter: self.chunk_counter,
flags: block_flags,
}
}
}
impl fmt::Debug for ChunkState {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ChunkState")
.field("len", &self.len())
.field("chunk_counter", &self.chunk_counter)
.field("flags", &self.flags)
.finish()
}
}
fn largest_power_of_two_leq(n: usize) -> usize {
((n / 2) + 1).next_power_of_two()
}
fn left_len(content_len: usize) -> usize {
debug_assert!(content_len > CHUNK_LEN);
let full_chunks = (content_len - 1) / CHUNK_LEN;
largest_power_of_two_leq(full_chunks) * CHUNK_LEN
}
fn compress_chunks_parallel(
input: &[u8],
key: &CVWords,
chunk_counter: u64,
flags: u8,
out: &mut [u8],
) -> usize {
debug_assert!(!input.is_empty(), "empty chunks below the root");
debug_assert!(input.len() <= 8 * CHUNK_LEN);
let mut chunks_exact = input.chunks_exact(CHUNK_LEN);
let mut chunks_array = ArrayVec::<&[u8; CHUNK_LEN], 8>::new();
for chunk in &mut chunks_exact {
chunks_array.push(array_ref!(chunk, 0, CHUNK_LEN));
}
hash_many(
&chunks_array,
key,
chunk_counter,
true,
flags,
CHUNK_START,
CHUNK_END,
out,
);
let chunks_so_far = chunks_array.len();
if !chunks_exact.remainder().is_empty() {
let counter = chunk_counter + chunks_so_far as u64;
let mut chunk_state = ChunkState::new(key, counter, flags);
chunk_state.update(chunks_exact.remainder());
*array_mut_ref!(out, chunks_so_far * OUT_LEN, OUT_LEN) =
chunk_state.output().chaining_value();
chunks_so_far + 1
} else {
chunks_so_far
}
}
fn compress_parents_parallel(
child_chaining_values: &[u8],
key: &CVWords,
flags: u8,
out: &mut [u8],
) -> usize {
debug_assert_eq!(child_chaining_values.len() % OUT_LEN, 0, "wacky hash bytes");
let num_children = child_chaining_values.len() / OUT_LEN;
debug_assert!(num_children >= 2, "not enough children");
debug_assert!(num_children <= 2 * 8, "too many");
let mut parents_exact = child_chaining_values.chunks_exact(BLOCK_LEN);
let mut parents_array = ArrayVec::<&[u8; BLOCK_LEN], 8>::new();
for parent in &mut parents_exact {
parents_array.push(array_ref!(parent, 0, BLOCK_LEN));
}
hash_many(&parents_array, key, 0, false, flags | PARENT, 0, 0, out);
let parents_so_far = parents_array.len();
if !parents_exact.remainder().is_empty() {
out[parents_so_far * OUT_LEN..][..OUT_LEN].copy_from_slice(parents_exact.remainder());
parents_so_far + 1
} else {
parents_so_far
}
}
fn compress_subtree_wide<J: join::Join>(
input: &[u8],
key: &CVWords,
chunk_counter: u64,
flags: u8,
out: &mut [u8],
) -> usize {
if input.len() <= 8 * CHUNK_LEN {
return compress_chunks_parallel(input, key, chunk_counter, flags, out);
}
let (left, right) = input.split_at(left_len(input.len()));
let right_chunk_counter = chunk_counter + (left.len() / CHUNK_LEN) as u64;
let mut cv_array = [0; 2 * 8 * OUT_LEN];
let degree = if left.len() == CHUNK_LEN { 1 } else { 8 };
let (left_out, right_out) = cv_array.split_at_mut(degree * OUT_LEN);
let (left_n, right_n) = J::join(
|| compress_subtree_wide::<J>(left, key, chunk_counter, flags, left_out),
|| compress_subtree_wide::<J>(right, key, right_chunk_counter, flags, right_out),
);
debug_assert_eq!(left_n, degree);
debug_assert!(right_n >= 1 && right_n <= left_n);
if left_n == 1 {
out[..2 * OUT_LEN].copy_from_slice(&cv_array[..2 * OUT_LEN]);
return 2;
}
let num_children = left_n + right_n;
compress_parents_parallel(&cv_array[..num_children * OUT_LEN], key, flags, out)
}
fn compress_subtree_to_parent_node<J: join::Join>(
input: &[u8],
key: &CVWords,
chunk_counter: u64,
flags: u8,
) -> [u8; BLOCK_LEN] {
debug_assert!(input.len() > CHUNK_LEN);
let mut cv_array = [0; 8 * OUT_LEN];
let mut num_cvs = compress_subtree_wide::<J>(input, &key, chunk_counter, flags, &mut cv_array);
debug_assert!(num_cvs >= 2);
let mut out_array = [0; 8 * OUT_LEN / 2];
while num_cvs > 2 {
let cv_slice = &cv_array[..num_cvs * OUT_LEN];
num_cvs = compress_parents_parallel(cv_slice, key, flags, &mut out_array);
cv_array[..num_cvs * OUT_LEN].copy_from_slice(&out_array[..num_cvs * OUT_LEN]);
}
*array_ref!(cv_array, 0, 2 * OUT_LEN)
}
fn hash_all_at_once<J: join::Join>(input: &[u8], key: &CVWords, flags: u8) -> Output {
if input.len() <= CHUNK_LEN {
return ChunkState::new(key, 0, flags).update(input).output();
}
Output {
input_chaining_value: *key,
block: compress_subtree_to_parent_node::<J>(input, key, 0, flags),
block_len: BLOCK_LEN as u8,
counter: 0,
flags: flags | PARENT,
}
}
pub fn hash(input: &[u8]) -> Hash {
hash_all_at_once::<join::SerialJoin>(input, IV, 0).root_hash()
}
pub fn keyed_hash(key: &[u8; KEY_LEN], input: &[u8]) -> Hash {
let key_words = words_from_le_bytes_32(key);
hash_all_at_once::<join::SerialJoin>(input, &key_words, KEYED_HASH).root_hash()
}
pub fn derive_key(context: &str, key_material: &[u8]) -> [u8; OUT_LEN] {
let context_key =
hash_all_at_once::<join::SerialJoin>(context.as_bytes(), IV, DERIVE_KEY_CONTEXT)
.root_hash();
let context_key_words = words_from_le_bytes_32(context_key.as_bytes());
hash_all_at_once::<join::SerialJoin>(key_material, &context_key_words, DERIVE_KEY_MATERIAL)
.root_hash()
.0
}
fn parent_node_output(
left_child: &CVBytes,
right_child: &CVBytes,
key: &CVWords,
flags: u8,
) -> Output {
let mut block = [0; BLOCK_LEN];
block[..32].copy_from_slice(left_child);
block[32..].copy_from_slice(right_child);
Output {
input_chaining_value: *key,
block,
block_len: BLOCK_LEN as u8,
counter: 0,
flags: flags | PARENT,
}
}
#[derive(Clone)]
pub struct Hasher {
key: CVWords,
chunk_state: ChunkState,
cv_stack: ArrayVec<CVBytes, { MAX_DEPTH + 1 }>,
}
impl Hasher {
fn new_internal(key: &CVWords, flags: u8) -> Self {
Self {
key: *key,
chunk_state: ChunkState::new(key, 0, flags),
cv_stack: ArrayVec::<_, 55>::new(),
}
}
pub fn new() -> Self {
Self::new_internal(IV, 0)
}
pub fn new_keyed(key: &[u8; KEY_LEN]) -> Self {
let key_words = words_from_le_bytes_32(key);
Self::new_internal(&key_words, KEYED_HASH)
}
pub fn new_derive_key(context: &str) -> Self {
let context_key =
hash_all_at_once::<join::SerialJoin>(context.as_bytes(), IV, DERIVE_KEY_CONTEXT)
.root_hash();
let context_key_words = words_from_le_bytes_32(context_key.as_bytes());
Self::new_internal(&context_key_words, DERIVE_KEY_MATERIAL)
}
pub fn reset(&mut self) -> &mut Self {
self.chunk_state = ChunkState::new(&self.key, 0, self.chunk_state.flags);
self.cv_stack.clear();
self
}
fn merge_cv_stack(&mut self, total_len: u64) {
let post_merge_stack_len = total_len.count_ones() as usize;
while self.cv_stack.len() > post_merge_stack_len {
let right_child = self.cv_stack.pop().unwrap();
let left_child = self.cv_stack.pop().unwrap();
let parent_output =
parent_node_output(&left_child, &right_child, &self.key, self.chunk_state.flags);
self.cv_stack.push(parent_output.chaining_value());
}
}
fn push_cv(&mut self, new_cv: &CVBytes, chunk_counter: u64) {
self.merge_cv_stack(chunk_counter);
self.cv_stack.push(*new_cv);
}
pub fn update(&mut self, input: &[u8]) -> &mut Self {
self.update_with_join::<join::SerialJoin>(input)
}
#[cfg(feature = "rayon")]
pub fn update_rayon(&mut self, input: &[u8]) -> &mut Self {
self.update_with_join::<join::RayonJoin>(input)
}
fn update_with_join<J: join::Join>(&mut self, mut input: &[u8]) -> &mut Self {
if self.chunk_state.len() > 0 {
let want = CHUNK_LEN - self.chunk_state.len();
let take = cmp::min(want, input.len());
self.chunk_state.update(&input[..take]);
input = &input[take..];
if !input.is_empty() {
debug_assert_eq!(self.chunk_state.len(), CHUNK_LEN);
let chunk_cv = self.chunk_state.output().chaining_value();
self.push_cv(&chunk_cv, self.chunk_state.chunk_counter);
self.chunk_state = ChunkState::new(
&self.key,
self.chunk_state.chunk_counter + 1,
self.chunk_state.flags,
);
} else {
return self;
}
}
while input.len() > CHUNK_LEN {
debug_assert_eq!(self.chunk_state.len(), 0, "no partial chunk data");
debug_assert_eq!(CHUNK_LEN.count_ones(), 1, "power of 2 chunk len");
let mut subtree_len = largest_power_of_two_leq(input.len());
let count_so_far = self.chunk_state.chunk_counter * CHUNK_LEN as u64;
while (subtree_len - 1) as u64 & count_so_far != 0 {
subtree_len /= 2;
}
let subtree_chunks = (subtree_len / CHUNK_LEN) as u64;
if subtree_len <= CHUNK_LEN {
debug_assert_eq!(subtree_len, CHUNK_LEN);
self.push_cv(
&ChunkState::new(
&self.key,
self.chunk_state.chunk_counter,
self.chunk_state.flags,
)
.update(&input[..subtree_len])
.output()
.chaining_value(),
self.chunk_state.chunk_counter,
);
} else {
let cv_pair = compress_subtree_to_parent_node::<J>(
&input[..subtree_len],
&self.key,
self.chunk_state.chunk_counter,
self.chunk_state.flags,
);
let left_cv = array_ref!(cv_pair, 0, 32);
let right_cv = array_ref!(cv_pair, 32, 32);
self.push_cv(left_cv, self.chunk_state.chunk_counter);
self.push_cv(
right_cv,
self.chunk_state.chunk_counter + (subtree_chunks / 2),
);
}
self.chunk_state.chunk_counter += subtree_chunks;
input = &input[subtree_len..];
}
debug_assert!(input.len() <= CHUNK_LEN);
if !input.is_empty() {
self.chunk_state.update(input);
self.merge_cv_stack(self.chunk_state.chunk_counter);
}
self
}
fn final_output(&self) -> Output {
if self.cv_stack.is_empty() {
debug_assert_eq!(self.chunk_state.chunk_counter, 0);
return self.chunk_state.output();
}
let mut output: Output;
let mut num_cvs_remaining = self.cv_stack.len();
if self.chunk_state.len() > 0 {
debug_assert_eq!(
self.cv_stack.len(),
self.chunk_state.chunk_counter.count_ones() as usize,
"cv stack does not need a merge"
);
output = self.chunk_state.output();
} else {
debug_assert!(self.cv_stack.len() >= 2);
output = parent_node_output(
&self.cv_stack[num_cvs_remaining - 2],
&self.cv_stack[num_cvs_remaining - 1],
&self.key,
self.chunk_state.flags,
);
num_cvs_remaining -= 2;
}
while num_cvs_remaining > 0 {
output = parent_node_output(
&self.cv_stack[num_cvs_remaining - 1],
&output.chaining_value(),
&self.key,
self.chunk_state.flags,
);
num_cvs_remaining -= 1;
}
output
}
pub fn finalize(&self) -> Hash {
self.final_output().root_hash()
}
pub fn finalize_xof(&self) -> OutputReader {
OutputReader::new(self.final_output())
}
pub fn count(&self) -> u64 {
self.chunk_state.chunk_counter * CHUNK_LEN as u64 + self.chunk_state.len() as u64
}
}
impl fmt::Debug for Hasher {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Hasher")
.field("flags", &self.chunk_state.flags)
.finish()
}
}
impl Default for Hasher {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl std::io::Write for Hasher {
#[inline]
fn write(&mut self, input: &[u8]) -> std::io::Result<usize> {
self.update(input);
Ok(input.len())
}
#[inline]
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
#[derive(Clone)]
pub struct OutputReader {
inner: Output,
position_within_block: u8,
}
impl OutputReader {
fn new(inner: Output) -> Self {
Self {
inner,
position_within_block: 0,
}
}
pub fn fill(&mut self, mut buf: &mut [u8]) {
while !buf.is_empty() {
let block: [u8; BLOCK_LEN] = self.inner.root_output_block();
let output_bytes = &block[self.position_within_block as usize..];
let take = cmp::min(buf.len(), output_bytes.len());
buf[..take].copy_from_slice(&output_bytes[..take]);
buf = &mut buf[take..];
self.position_within_block += take as u8;
if self.position_within_block == BLOCK_LEN as u8 {
self.inner.counter += 1;
self.position_within_block = 0;
}
}
}
pub fn position(&self) -> u64 {
self.inner.counter * BLOCK_LEN as u64 + self.position_within_block as u64
}
pub fn set_position(&mut self, position: u64) {
self.position_within_block = (position % BLOCK_LEN as u64) as u8;
self.inner.counter = position / BLOCK_LEN as u64;
}
}
impl fmt::Debug for OutputReader {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("OutputReader")
.field("position", &self.position())
.finish()
}
}
impl std::io::Read for OutputReader {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
self.fill(buf);
Ok(buf.len())
}
}
impl std::io::Seek for OutputReader {
fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
let max_position = u64::max_value() as i128;
let target_position: i128 = match pos {
std::io::SeekFrom::Start(x) => x as i128,
std::io::SeekFrom::Current(x) => self.position() as i128 + x as i128,
std::io::SeekFrom::End(_) => {
return Err(std::io::Error::new(
std::io::ErrorKind::InvalidInput,
"seek from end not supported",
));
}
};
if target_position < 0 {
return Err(std::io::Error::new(
std::io::ErrorKind::InvalidInput,
"seek before start",
));
}
self.set_position(cmp::min(target_position, max_position) as u64);
Ok(self.position())
}
}