1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//! # blackscholes_python
//! This library provides an simple, lightweight, and efficient (though not heavily optimized) implementation of the Black-Scholes-Merton model for pricing European options.
//!
//! ## Usage
//! Simply create an instance of the `Inputs` struct and call the desired method.
//!
//! Example:
//! ```
//! let inputs: blackscholes::Inputs = blackscholes::Inputs.new(blackscholes::OptionType::Call, 100.0, 100.0, None, 0.05, 0.02, 20.0 / 365.25, Some(0.2));
//! let price: f64 = inputs.calc_price();
//! ```
//!
//! See the [Github Repo](https://github.com/hayden4r4/blackscholes-rust/tree/python_package) for full source code.  Other implementations such as a [npm WASM package](https://www.npmjs.com/package/@haydenr4/blackscholes_wasm) and a [pure Rust Crate](https://crates.io/crates/blackscholes) are also available.

use statrs::distribution::{Continuous, ContinuousCDF, Normal};
use std::f64::consts::{E, PI};
use std::fmt::{Display, Formatter, Result};

use pyo3::prelude::*;

#[pymodule]
fn blackscholes_python(_py: Python, m: &PyModule) -> PyResult<()> {
    m.add_class::<OptionType>()?;
    m.add_class::<Inputs>()?;
    Ok(())
}

/// The type of option to be priced. Call or Put.
#[derive(Debug, Clone, Eq, PartialEq)]
#[pyclass(text_signature = "(Call, Put, /)")]
pub enum OptionType {
    Call,
    Put,
}

impl Display for OptionType {
    fn fmt(&self, f: &mut Formatter) -> Result {
        match self {
            OptionType::Call => write!(f, "Call"),
            OptionType::Put => write!(f, "Put"),
        }
    }
}

#[pymethods]
impl OptionType {
    /// Creates an instance of the `OptionType` enum.
    /// # Arguments
    /// * `option_type` - The type of option to be priced. Call or Put.
    /// # Example
    /// ```
    /// use blackscholes::OptionType;
    /// let option_type: OptionType = OptionType::Call;
    /// ```
    /// # Returns
    /// An instance of the `OptionType` enum.
    #[new]
    pub fn new(option_type: &str) -> Self {
        match option_type {
            "Call" => OptionType::Call,
            "Put" => OptionType::Put,
            _ => panic!("Option type must be either Call or Put"),
        }
    }
    /// # Returns
    /// A string representation of the `OptionType` enum.
    pub fn __str__(&self) -> String {
        format!("{}", self)
    }
}

/// The inputs to the Black-Scholes-Merton model.
#[derive(Debug, Clone)]
#[pyclass(text_signature = "(option_type, s, k, p, r, q, t, sigma, /)")]
pub struct Inputs {
    /// The type of the option (call or put)
    pub option_type: OptionType,
    /// Stock price
    pub s: f64,
    /// Strike price
    pub k: f64,
    /// Option price
    pub p: Option<f64>,
    /// Risk-free rate
    pub r: f64,
    /// Dividend yield
    pub q: f64,
    /// Time to maturity in years
    pub t: f64,
    /// Volatility
    pub sigma: Option<f64>,
}

impl Display for Inputs {
    fn fmt(&self, f: &mut Formatter) -> Result {
        writeln!(f, "Option type: {}", self.option_type)?;
        writeln!(f, "Stock price: {:.2}", self.s)?;
        writeln!(f, "Strike price: {:.2}", self.k)?;
        match self.p {
            Some(p) => writeln!(f, "Option price: {:.2}", p)?,
            None => writeln!(f, "Option price: None")?,
        }
        writeln!(f, "Risk-free rate: {:.4}", self.r)?;
        writeln!(f, "Dividend yield: {:.4}", self.q)?;
        writeln!(f, "Time to maturity: {:.4}", self.t)?;
        match self.sigma {
            Some(sigma) => writeln!(f, "Volatility: {:.4}", sigma)?,
            None => writeln!(f, "Volatility: None")?,
        }
        Ok(())
    }
}

/// Calculates the d1, d2, nd1, and nd2 values for the option.
/// # Returns
/// Tuple (f64, f64) of the nd1 and nd2 values for the given inputs.
fn nd1nd2(inputs: &Inputs, normal: bool) -> (f64, f64) {
    let sigma: f64 = match inputs.sigma {
        Some(sigma) => sigma,
        None => panic!("Expected an Option(f64) for inputs.sigma, received None"),
    };

    let nd1nd2 = {
        // Calculating numerator of d1
        let numd1: f64 =
            (inputs.s / inputs.k).ln() + (inputs.r - inputs.q + (sigma.powi(2)) / 2.0) * inputs.t;

        // Calculating denominator of d1 and d2
        let den: f64 = sigma * (inputs.t.sqrt());

        let d1: f64 = numd1 / den;
        let d2: f64 = d1 - den;

        let d1d2: (f64, f64) = (d1, d2);

        // Returns d1 and d2 values if deriving from normal distribution is not necessary
        //  (i.e. gamma, vega, and theta calculations)
        if !normal {
            return d1d2;
        }

        // Creating normal distribution
        let n: Normal = Normal::new(0.0, 1.0).unwrap();

        // Calculates the nd1 and nd2 values
        // Checks if OptionType is Call or Put
        let nd1nd2: (f64, f64) = match inputs.option_type {
            OptionType::Call => (n.cdf(d1d2.0), n.cdf(d1d2.1)),
            OptionType::Put => (n.cdf(-d1d2.0), n.cdf(-d1d2.1)),
        };
        nd1nd2
    };
    nd1nd2
}

/// # Returns
/// f64 of the derivative of the nd1.
fn calc_nprimed1(inputs: &Inputs) -> f64 {
    let (d1, _): (f64, f64) = nd1nd2(&inputs, false);

    // Generate normal probability distribution
    let n: Normal = Normal::new(0.0, 1.0).unwrap();

    // Get the standard normal probability density function value of d1
    let nprimed1: f64 = n.pdf(d1);
    nprimed1
}

/// Methods for calculating the price, greeks, and implied volatility of an option.
#[pymethods]
impl Inputs {
    /// Creates instance ot the `Inputs` struct.
    /// # Arguments
    /// * `option_type` - The type of option to be priced.
    /// * `s` - The current price of the underlying asset.
    /// * `k` - The strike price of the option.
    /// * `p` - The dividend yield of the underlying asset.
    /// * `r` - The risk-free interest rate.
    /// * `q` - The dividend yield of the underlying asset.
    /// * `t` - The time to maturity of the option in years.
    /// * `sigma` - The volatility of the underlying asset.
    /// # Example
    /// ```
    /// use blackscholes::Inputs;
    /// let inputs = Inputs::new(OptionType::Call, 100.0, 100.0, None, 0.05, 0.2, 20/365.25, Some(0.2));
    /// ```
    /// # Returns
    /// An instance of the `Inputs` struct.
    #[new]
    pub fn new(
        option_type: OptionType,
        s: f64,
        k: f64,
        p: Option<f64>,
        r: f64,
        q: f64,
        t: f64,
        sigma: Option<f64>,
    ) -> Self {
        Self {
            option_type,
            s,
            k,
            p,
            r,
            q,
            t,
            sigma,
        }
    }

    /// # Returns
    /// string representation of the `Inputs` struct.    
    pub fn __str__(&self) -> String {
        format!(
            "OptionType: {}, S: {}, K: {}, P: {}, R: {}, Q: {}, T: {}, Sigma: {}",
            self.option_type,
            self.s,
            self.k,
            match self.p {
                Some(p) => format!("{}", p),
                None => "None".to_string(),
            },
            self.r,
            self.q,
            self.t,
            match self.sigma {
                Some(sigma) => format!("{}", sigma),
                None => "None".to_string(),
            },
        )
    }
    /// Calculates the price of the option.
    /// # Requires
    /// s, k, r, q, t, sigma.
    /// # Returns
    /// f64 of the price of the option.
    /// # Example
    /// ```
    /// use blackscholes::Inputs;
    /// let inputs = Inputs::new(OptionType::Call, 100.0, 100.0, None, 0.05, 0.2, 20/365.25, Some(0.2));
    /// let price = inputs.calc_price();
    /// ```
    pub fn calc_price(&self) -> PyResult<f64> {
        let (nd1, nd2): (f64, f64) = nd1nd2(self, true);
        let price: f64 = match self.option_type {
            OptionType::Call => f64::max(
                0.0,
                nd1 * self.s * E.powf(-self.q * self.t) - nd2 * self.k * E.powf(-self.r * self.t),
            ),
            OptionType::Put => f64::max(
                0.0,
                nd2 * self.k * E.powf(-self.r * self.t) - nd1 * self.s * E.powf(-self.q * self.t),
            ),
        };
        Ok(price)
    }
    /// Calculates the delta of the option.
    /// # Requires
    /// s, k, r, q, t, sigma
    /// # Returns
    /// f64 of the delta of the option.
    /// # Example
    /// ```
    /// use blackscholes::Inputs;
    /// let inputs = Inputs::new(OptionType::Call, 100.0, 100.0, None, 0.05, 0.2, 20/365.25, Some(0.2));
    /// let delta = inputs.calc_delta();
    /// ```
    pub fn calc_delta(&self) -> PyResult<f64> {
        let (nd1, _): (f64, f64) = nd1nd2(self, true);
        let delta: f64 = match self.option_type {
            OptionType::Call => nd1 * E.powf(-self.q * self.t),
            OptionType::Put => -nd1 * E.powf(-self.q * self.t),
        };
        Ok(delta)
    }

    /// Calculates the gamma of the option.
    /// # Requires
    /// s, k, r, q, t, sigma
    /// # Returns
    /// f64 of the gamma of the option.
    /// # Example
    /// ```
    /// use blackscholes::Inputs;
    /// let inputs = Inputs::new(OptionType::Call, 100.0, 100.0, None, 0.05, 0.2, 20/365.25, Some(0.2));
    /// let gamma = inputs.calc_gamma();
    /// ```
    pub fn calc_gamma(&self) -> PyResult<f64> {
        let sigma: f64 = match self.sigma {
            Some(sigma) => sigma,
            None => panic!("Expected an Option(f64) for self.sigma, received None"),
        };

        let nprimed1: f64 = calc_nprimed1(self);
        let gamma: f64 = E.powf(-self.q * self.t) * nprimed1 / (self.s * sigma * self.t.sqrt());
        Ok(gamma)
    }

    /// Calculates the theta of the option.
    /// Uses 365.25 days in a year for calculations.
    /// # Requires
    /// s, k, r, q, t, sigma
    /// # Returns
    /// f64 of theta per day (not per year).
    /// # Example
    /// ```
    /// use blackscholes::Inputs;
    /// let inputs = Inputs::new(OptionType::Call, 100.0, 100.0, None, 0.05, 0.2, 20/365.25, Some(0.2));
    /// let theta = inputs.calc_theta();
    /// ```
    pub fn calc_theta(&self) -> PyResult<f64> {
        let sigma: f64 = match self.sigma {
            Some(sigma) => sigma,
            None => panic!("Expected an Option(f64) for self.sigma, received None"),
        };

        let nprimed1: f64 = calc_nprimed1(self);
        let (nd1, nd2): (f64, f64) = nd1nd2(self, true);

        // Calculation uses 360 for T: Time of days per year.
        let theta: f64 = match self.option_type {
            OptionType::Call => {
                (-(self.s * sigma * E.powf(-self.q * self.t) * nprimed1 / (2.0 * self.t.sqrt()))
                    - self.r * self.k * E.powf(-self.r * self.t) * nd2
                    + self.q * self.s * E.powf(-self.q * self.t) * nd1)
                    / 365.25
            }
            OptionType::Put => {
                (-(self.s * sigma * E.powf(-self.q * self.t) * nprimed1 / (2.0 * self.t.sqrt()))
                    + self.r * self.k * E.powf(-self.r * self.t) * nd2
                    - self.q * self.s * E.powf(-self.q * self.t) * nd1)
                    / 365.25
            }
        };
        Ok(theta)
    }

    /// Calculates the vega of the option.
    /// # Requires
    /// s, k, r, q, t, sigma
    /// # Returns
    /// f64 of the vega of the option.
    /// # Example
    /// ```
    /// use blackscholes::Inputs;
    /// let inputs = Inputs::new(OptionType::Call, 100.0, 100.0, None, 0.05, 0.2, 20/365.25, Some(0.2));
    /// let vega = inputs.calc_vega();
    /// ```
    pub fn calc_vega(&self) -> PyResult<f64> {
        let nprimed1: f64 = calc_nprimed1(self);
        let vega: f64 = 1.0 / 100.0 * self.s * E.powf(-self.q * self.t) * self.t.sqrt() * nprimed1;
        Ok(vega)
    }

    /// Calculates the rho of the option.
    /// # Requires
    /// s, k, r, q, t, sigma
    /// # Returns
    /// f64 of the rho of the option.
    /// # Example
    /// ```
    /// use blackscholes::Inputs;
    /// let inputs = Inputs::new(OptionType::Call, 100.0, 100.0, None, 0.05, 0.2, 20/365.25, Some(0.2));
    /// let rho = inputs.calc_rho();
    /// ```
    pub fn calc_rho(&self) -> PyResult<f64> {
        let (_, nd2): (f64, f64) = nd1nd2(self, true);
        let rho: f64 = match self.option_type {
            OptionType::Call => 1.0 / 100.0 * self.k * self.t * E.powf(-self.r * self.t) * nd2,
            OptionType::Put => -1.0 / 100.0 * self.k * self.t * E.powf(-self.r * self.t) * nd2,
        };
        Ok(rho)
    }

    /// Calculates the implied volatility of the option.
    /// Tolerance is the max error allowed for the implied volatility,
    /// the lower the tolerance the more iterations will be required.
    /// Recommended to be a value between 0.001 - 0.0001 for highest efficiency/accuracy.
    /// Initializes estimation of sigma using Brenn and Subrahmanyam (1998) method of calculating initial iv estimation.
    /// Uses Newton Raphson algorithm to calculate implied volatility.
    /// # Requires
    /// s, k, r, q, t, p
    /// # Returns
    /// f64 of the implied volatility of the option.
    /// # Example:
    /// ```
    /// use blackscholes::Inputs;
    /// let inputs = Inputs::new(OptionType::Call, 100.0, 100.0, Some(10), 0.05, 0.02, 20.0 / 365.25, None);
    /// let iv = inputs.calc_iv(0.0001);
    /// ```
    pub fn calc_iv(&self, tolerance: f64) -> PyResult<f64> {
        let mut inputs: Inputs = self.clone();

        let p: f64 = match inputs.p {
            Some(p) => p,
            None => panic!("inputs.p must contain Some(f64), found None"),
        };
        // Initialize estimation of sigma using Brenn and Subrahmanyam (1998) method of calculating initial iv estimation
        let mut sigma: f64 = (2.0 * PI / inputs.t).sqrt() * (p / inputs.s);
        // Initialize diff to 100 for use in while loop
        let mut diff: f64 = 100.0;

        // Uses Newton Raphson algorithm to calculate implied volatility
        // Test if the difference between calculated option price and actual option price is > tolerance
        // If so then iterate until the difference is less than tolerance
        while diff.abs() > tolerance {
            inputs.sigma = Some(sigma);
            diff = inputs.calc_price().unwrap() - p;
            sigma -= diff / (inputs.calc_vega().unwrap() * 100.0);
        }
        Ok(sigma)
    }
}