1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
/*! `BitSlice` Wide Reference
This module bears some explanation. Let’s get *uncomfortable* here.
Safe Rust is very strict about concepts like lifetimes and size in memory. It
won’t allow you to have arbitrary *references* to things where Rust doesn’t feel
absolutely confident that the referent will outlive the reference, and it won’t
let you have things *at all* that it can't size at compile time. This makes
dealing with runtime-sized memory of uncertain lifetime tricky to do, and the
language provides some tools out of the box for this: slice references, which
store a pointer and also a length, and do so in a manner vaguely obscured to the
rest of Rust code behind opaque stdlib types.
My first instinct was to define `BitSlice` as a newtype wrapper around an `&T`,
so that `BitSlice` would be sized and manageable directly. Unfortunately, this
parameterizes the lifetime of the reference into the `BitSlice` struct, making
it generic over a lifetime. When I tried to implement `Deref` on `BitVec` to
return a `BitSlice`, I realized I could not do so for two main reasons: one,
`Deref` requires returning a reference to a type, and it is impossible to tell
Rust "this type is a named reference", and two, … the lifetime parameter of
`BitSlice` is not able to be provided by the `Deref` trait, the `deref` trait
function, or even by using Higher Ranked Trait Bounds because HRTB just allows
the creation of a lifetime parameter in items in the trait scope that were not
defined with that lifetime parameter, but without Generic Associated Types it is
impossible to add that lifetime parameter to the associated type `Target`!
Also this ran into mutability issues in regards to the interior reference vs the
wrapper.
So `BitSlice` is a newtype wrapper around `[T]`, and can only be touched as a
reference or mutable reference, and has the advantage that now it can be a
`Deref::Target`.
**DO NOT** create an `&BitSlice` yourself! A slice reference can be made to
count bits using `.into()`.
!*/
use core::{
cmp::{
Eq,
Ord,
Ordering,
PartialEq,
PartialOrd,
},
convert::{
AsMut,
AsRef,
From,
},
hash::{
Hash,
Hasher,
},
iter::{
DoubleEndedIterator,
ExactSizeIterator,
Iterator,
IntoIterator,
},
marker::PhantomData,
mem,
ops::{
AddAssign,
BitAndAssign,
BitOrAssign,
BitXorAssign,
Index,
Neg,
Not,
ShlAssign,
ShrAssign,
},
ptr,
slice,
};
#[cfg(feature = "alloc")]
use core::fmt::{
self,
Debug,
Display,
Formatter,
};
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::borrow::ToOwned;
#[cfg(feature = "std")]
use std::borrow::ToOwned;
/** A compact slice of bits, whose cursor and storage type can be customized.
`BitSlice` is a newtype wrapper over `[T]`, and as such can only be held by
reference. It is impossible to create a `Box<BitSlice<E, T>>` from this library,
and assembling one yourself is Undefined Behavior for which this library is not
responsible. **Do not try to create a `Box<BitSlice>`.** If you want an owned
bit collection, use `BitVec`. (This may change in a future release.)
`BitSlice` is strictly a reference type. The memory it governs must be owned by
some other type, and a shared or exclusive reference to it as `BitSlice` can be
created by using the `From` implementation on `&BitSlice` and `&mut BitSlice`.
`BitSlice` is to `BitVec` what `[T]` is to `Vec<T>`.
`BitSlice` takes two type parameters.
- `E: Endian` must be an implementor of the `Endian` trait. `BitVec` takes a
`PhantomData` marker for access to the associated functions, and will never
make use of an instance of the trait. The default implementations,
`LittleEndian` and `BigEndian`, are zero-sized, and any further
implementations should be as well, as the invoked functions will never receive
state.
- `T: Bits` must be a primitive type. Rust decided long ago to not provide a
unifying trait over the primitives, so `Bits` provides access to just enough
properties of the primitives for `BitVec` to use. This trait is sealed against
downstream implementation, and can only be implemented in this crate.
**/
#[cfg_attr(nightly, repr(transparent))]
pub struct BitSlice<E = crate::BigEndian, T = u8>
where E: crate::Endian, T: crate::Bits {
_endian: PhantomData<E>,
inner: [T],
}
impl<E, T> BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
/// Gets the bit value at the given position.
///
/// The index value is a semantic count, not a bit address. It converts to a
/// bit position internally to this function.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![0, 0, 1, 0, 0];
/// let bits: &BitSlice = &bv;
/// assert!(bits.get(2));
/// # }
/// ```
pub fn get(&self, index: usize) -> bool {
assert!(index < self.len(), "Index out of range!");
let (elt, bit) = T::split(index);
self.as_ref()[elt].get(E::curr::<T>(bit))
}
/// Sets the bit value at the given position.
///
/// The index value is a semantic count, not a bit address. It converts to a
/// bit position internally to this function.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let mut bv = bitvec![0; 5];
/// let bits: &mut BitSlice = &mut bv;
/// bits.set(2, true);
/// assert!(bits.get(2));
/// # }
/// ```
pub fn set(&mut self, index: usize, value: bool) {
assert!(index < self.len(), "Index out of range!");
let (elt, bit) = T::split(index);
self.as_mut()[elt].set(E::curr::<T>(bit), value);
}
/// Returns true if *all* bits in the slice are set (logical `∧`).
///
/// # Truth Table
///
/// ```text
/// 0 0 => 0
/// 0 1 => 0
/// 1 0 => 0
/// 1 1 => 1
/// ```
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let all = bitvec![1; 10];
/// let any = bitvec![0, 0, 1, 0, 0];
/// let some = bitvec![1, 1, 0, 1, 1];
/// let none = bitvec![0; 10];
///
/// assert!(all.all());
/// assert!(!any.all());
/// assert!(!some.all());
/// assert!(!none.all());
/// # }
/// ```
pub fn all(&self) -> bool {
// Gallop the filled elements
let store = self.as_ref();
for elt in &store[.. self.elts()] {
if *elt != T::from(!0) {
return false;
}
}
// Walk the partial tail
let bits = self.bits();
if bits > 0 {
let tail = store[self.elts()];
for bit in 0 .. bits {
if !tail.get(E::curr::<T>(bit)) {
return false;
}
}
}
true
}
/// Returns true if *any* bit in the slice is set (logical `∨`).
///
/// # Truth Table
///
/// ```text
/// 0 0 => 0
/// 0 1 => 1
/// 1 0 => 1
/// 1 1 => 1
/// ```
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let all = bitvec![1; 10];
/// let any = bitvec![0, 0, 1, 0, 0];
/// let some = bitvec![1, 1, 0, 1, 1];
/// let none = bitvec![0; 10];
///
/// assert!(all.any());
/// assert!(any.any());
/// assert!(some.any());
/// assert!(!none.any());
/// # }
/// ```
pub fn any(&self) -> bool {
// Gallop the filled elements
let store = self.as_ref();
for elt in &store[.. self.elts()] {
if *elt != T::from(0) {
return true;
}
}
// Walk the partial tail
let bits = self.bits();
if bits > 0 {
let tail = store[self.elts()];
for bit in 0 .. bits {
if tail.get(E::curr::<T>(bit)) {
return true;
}
}
}
false
}
/// Returns true if *any* bit in the slice is unset (logical `¬∧`).
///
/// # Truth Table
///
/// ```text
/// 0 0 => 1
/// 0 1 => 1
/// 1 0 => 1
/// 1 1 => 0
/// ```
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let all = bitvec![1; 10];
/// let any = bitvec![0, 0, 1, 0, 0];
/// let some = bitvec![1, 1, 0, 1, 1];
/// let none = bitvec![0; 10];
///
/// assert!(!all.not_all());
/// assert!(any.not_all());
/// assert!(some.not_all());
/// assert!(none.not_all());
/// # }
/// ```
pub fn not_all(&self) -> bool {
!self.all()
}
/// Returns true if *all* bits in the slice are unset (logical `¬∨`).
///
/// # Truth Table
///
/// ```text
/// 0 0 => 1
/// 0 1 => 0
/// 1 0 => 0
/// 1 1 => 0
/// ```
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let all = bitvec![1; 10];
/// let any = bitvec![0, 0, 1, 0, 0];
/// let some = bitvec![1, 1, 0, 1, 1];
/// let none = bitvec![0; 10];
///
/// assert!(!all.not_any());
/// assert!(!any.not_any());
/// assert!(!some.not_any());
/// assert!(none.not_any());
/// # }
/// ```
pub fn not_any(&self) -> bool {
!self.any()
}
/// Returns true if some, but not all, bits are set and some, but not all,
/// are unset.
///
/// This is false if either `all()` or `none()` are true.
///
/// # Truth Table
///
/// ```text
/// 0 0 => 0
/// 0 1 => 1
/// 1 0 => 1
/// 1 1 => 0
/// ```
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let all = bitvec![1; 2];
/// let some = bitvec![1, 0];
/// let none = bitvec![0; 2];
///
/// assert!(!all.some());
/// assert!(some.some());
/// assert!(!none.some());
/// # }
/// ```
pub fn some(&self) -> bool {
self.any() && self.not_all()
}
/// Counts how many bits are set high.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![1, 0, 1, 0, 1];
/// assert_eq!(bv.count_ones(), 3);
/// # }
/// ```
pub fn count_ones(&self) -> usize {
self.into_iter().filter(|b| *b).count()
}
/// Counts how many bits are set low.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![0, 1, 0, 1, 0];
/// assert_eq!(bv.count_zeros(), 3);
/// # }
/// ```
pub fn count_zeros(&self) -> usize {
self.into_iter().filter(|b| !b).count()
}
/// Returns the number of bits contained in the `BitSlice`.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![1; 10];
/// let bits: &BitSlice = &bv;
/// assert_eq!(bits.len(), 10);
/// # }
/// ```
pub fn len(&self) -> usize {
self.inner.len()
}
/// Counts how many *whole* storage elements are in the `BitSlice`.
///
/// If the `BitSlice` length is not an even multiple of the width of `T`,
/// then the slice under this `BitSlice` is one element longer than this
/// method reports, and the number of bits in it are reported by `bits()`.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![1; 10];
/// let bits: &BitSlice = &bv;
/// assert_eq!(bits.elts(), 1);
/// # }
/// ```
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![1; 16];
/// let bits: &BitSlice = &bv;
/// assert_eq!(bits.elts(), 2);
/// # }
/// ```
pub fn elts(&self) -> usize {
self.len() >> T::BITS
}
/// Counts how many bits are in the trailing partial storage element.
///
/// If the `BitSlice` length is an even multiple of the width of `T`, then
/// this returns 0 and the `BitSlice` does not consider its final element to
/// be partially used.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![1; 10];
/// let bits: &BitSlice = &bv;
/// assert_eq!(bits.bits(), 2);
/// # }
/// ```
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![1; 16];
/// let bits: &BitSlice = &bv;
/// assert_eq!(bits.bits(), 0);
/// # }
/// ```
pub fn bits(&self) -> u8 {
self.len() as u8 & T::MASK
}
/// Returns `true` if the slice contains no bits.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![];
/// let bits: &BitSlice = &bv;
/// assert!(bits.is_empty());
/// # }
/// ```
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![0; 5];
/// let bits: &BitSlice = &bv;
/// assert!(!bits.is_empty());
/// # }
/// ```
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Provides read-only iteration across the collection.
///
/// The iterator returned from this method implements `ExactSizeIterator`
/// and `DoubleEndedIterator` just as the consuming `.into_iter()` method’s
/// iterator does.
pub fn iter(&self) -> Iter<E, T> {
self.into_iter()
}
/// Provides mutable traversal of the collection.
///
/// It is impossible to implement `IndexMut` on `BitSlice` because bits do
/// not have addresses, so there can be no `&mut u1`. This method allows the
/// client to receive an enumerated bit, and provide a new bit to set at
/// each index.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let mut bv = bitvec![1; 8];
/// let bref: &mut BitSlice = &mut bv;
/// bref.for_each(|idx, bit| {
/// if idx % 2 == 0 {
/// !bit
/// }
/// else {
/// bit
/// }
/// });
/// assert_eq!(&[0b01010101], bref.as_ref());
/// # }
/// ```
pub fn for_each<F>(&mut self, op: F)
where F: Fn(usize, bool) -> bool {
for idx in 0 .. self.len() {
let tmp = self.get(idx);
self.set(idx, op(idx, tmp));
}
}
/// Retrieves a read pointer to the start of the data slice.
pub(crate) fn as_ptr(&self) -> *const T {
self.inner.as_ptr()
}
/// Retrieves a write pointer to the start of the data slice.
pub(crate) fn as_mut_ptr(&mut self) -> *mut T {
self.inner.as_mut_ptr()
}
/// Computes the actual length of the data slice, including the partial tail
/// if present.
///
/// # Examples
///
/// ```rust,ignore
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![1; 10];
/// let bits: &BitSlice = &bv;
/// assert_eq!(bits.elts(), 1);
/// assert_eq!(bits.raw_len(), 2);
/// # }
/// ```
///
/// This test is never compiled because the functions it calls are not
/// accessible to the test crate.
pub(crate) fn raw_len(&self) -> usize {
self.elts() + if self.bits() > 0 { 1 } else { 0 }
}
/// Prints a type header into the Formatter.
#[cfg(feature = "alloc")]
pub(crate) fn fmt_header(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitSlice<{}, {}>", E::TY, T::TY)
}
/// Formats the contents data slice.
///
/// The debug flag indicates whether to indent each line (`Debug` does,
/// `Display` does not).
#[cfg(feature = "alloc")]
pub(crate) fn fmt_body(&self, fmt: &mut Formatter, debug: bool) -> fmt::Result {
let (elts, bits) = T::split(self.len());
let len = self.raw_len();
let buf = self.as_ref();
let alt = fmt.alternate();
for (idx, elt) in buf.iter().take(elts).enumerate() {
Self::fmt_element(fmt, elt)?;
if idx < len - 1 {
match (alt, debug) {
// {}
(false, false) => fmt.write_str(" "),
// {:#}
(true, false) => writeln!(fmt),
// {:?}
(false, true) => fmt.write_str(", "),
// {:#?}
(true, true) => { writeln!(fmt, ",")?; fmt.write_str(" ") },
}?;
}
}
if bits > 0 {
Self::fmt_bits(fmt, &buf[elts], bits)?;
}
Ok(())
}
/// Formats a whole storage element of the data slice.
#[cfg(feature = "alloc")]
pub(crate) fn fmt_element(fmt: &mut Formatter, elt: &T) -> fmt::Result {
Self::fmt_bits(fmt, elt, T::WIDTH)
}
/// Formats a partial element of the data slice.
#[cfg(feature = "alloc")]
pub(crate) fn fmt_bits(fmt: &mut Formatter, elt: &T, bits: u8) -> fmt::Result {
use core::fmt::Write;
#[cfg(not(feature = "std"))]
use alloc::string::String;
let mut out = String::with_capacity(bits as usize);
for bit in 0 .. bits {
let cur = E::curr::<T>(bit);
out.write_str(if elt.get(cur) { "1" } else { "0" })?;
}
fmt.write_str(&out)
}
}
/// Creates a new `BitVec` out of a `BitSlice`.
#[cfg(feature = "alloc")]
impl<E, T> ToOwned for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
type Owned = crate::BitVec<E, T>;
/// Clones a borrowed `BitSlice` into an owned `BitVec`.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let src = bitvec![0; 5];
/// let src_ref: &BitSlice = &src;
/// let dst = src_ref.to_owned();
/// assert_eq!(src, dst);
/// # }
/// ```
fn to_owned(&self) -> Self::Owned {
let mut out = Self::Owned::with_capacity(self.len());
unsafe {
let src = self.as_ptr();
let dst = out.as_mut_ptr();
let len = self.raw_len();
ptr::copy_nonoverlapping(src, dst, len);
out.set_len(self.len());
}
out
}
}
impl<E, T> Eq for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {}
impl<E, T> Ord for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
fn cmp(&self, rhs: &Self) -> Ordering {
match self.partial_cmp(rhs) {
Some(ord) => ord,
None => unreachable!("`BitSlice` has a total ordering"),
}
}
}
/// Tests if two `BitSlice`s are semantically — not bitwise — equal.
///
/// It is valid to compare two slices of different endianness or element types.
///
/// The equality condition requires that they have the same number of total bits
/// and that each pair of bits in semantic order are identical.
impl<A, B, C, D> PartialEq<BitSlice<C, D>> for BitSlice<A, B>
where A: crate::Endian, B: crate::Bits, C: crate::Endian, D: crate::Bits {
/// Performs a comparison by `==`.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let l: BitVec<LittleEndian, u16> = bitvec![LittleEndian, u16; 0, 1, 0, 1];
/// let r: BitVec<BigEndian, u32> = bitvec![BigEndian, u32; 0, 1, 0, 1];
///
/// let ls: &BitSlice<_, _> = &l;
/// let rs: &BitSlice<_, _> = &r;
/// assert!(ls == rs);
/// # }
/// ```
fn eq(&self, rhs: &BitSlice<C, D>) -> bool {
let (l, r) = (self.iter(), rhs.iter());
if l.len() != r.len() {
return false;
}
l.zip(r).all(|(l, r)| l == r)
}
}
/// Compares two `BitSlice`s by semantic — not bitwise — ordering.
///
/// The comparison sorts by testing each index for one slice to have a set bit
/// where the other has an unset bit. If the slices are different, the slice
/// with the set bit sorts greater than the slice with the unset bit.
///
/// If one of the slices is exhausted before they differ, the longer slice is
/// greater.
impl<A, B, C, D> PartialOrd<BitSlice<C, D>> for BitSlice<A, B>
where A: crate::Endian, B: crate::Bits, C: crate::Endian, D: crate::Bits {
/// Performs a comparison by `<` or `>`.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let a = bitvec![0, 1, 0, 0];
/// let b = bitvec![0, 1, 0, 1];
/// let c = bitvec![0, 1, 0, 1, 1];
/// let aref: &BitSlice = &a;
/// let bref: &BitSlice = &b;
/// let cref: &BitSlice = &c;
/// assert!(aref < bref);
/// assert!(bref < cref);
/// # }
/// ```
fn partial_cmp(&self, rhs: &BitSlice<C, D>) -> Option<Ordering> {
for (l, r) in self.iter().zip(rhs.iter()) {
match (l, r) {
(true, false) => return Some(Ordering::Greater),
(false, true) => return Some(Ordering::Less),
_ => continue,
}
}
self.len().partial_cmp(&rhs.len())
}
}
/// Gives write access to all elements in the underlying storage, including the
/// partially-filled tail element (if present).
impl<E, T> AsMut<[T]> for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
/// Accesses the underlying store.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let mut bv: BitVec = bitvec![0, 0, 0, 0, 0, 0, 0, 0, 1];
/// for elt in bv.as_mut() {
/// *elt += 2;
/// }
/// assert_eq!(&[2, 130], bv.as_ref());
/// # }
/// ```
fn as_mut(&mut self) -> &mut [T] {
let (ptr, len): (*mut T, usize) = (self.as_mut_ptr(), self.raw_len());
unsafe { slice::from_raw_parts_mut(ptr, len) }
}
}
/// Gives read access to all elements in the underlying storage, including the
/// partially-filled tail element (if present).
impl<E, T> AsRef<[T]> for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
/// Accesses the underlying store.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![0, 0, 0, 0, 0, 0, 0, 0, 1];
/// let bref: &BitSlice = &bv;
/// assert_eq!(&[0, 0b1000_0000], bref.as_ref());
/// # }
/// ```
fn as_ref(&self) -> &[T] {
let (ptr, len): (*const T, usize) = (self.as_ptr(), self.raw_len());
unsafe { slice::from_raw_parts(ptr, len) }
}
}
/// Builds a `BitSlice` from a slice of elements. The resulting `BitSlice` will
/// always completely fill the original slice, and will not have a partial tail.
impl<'a, E, T> From<&'a [T]> for &'a BitSlice<E, T>
where E: crate::Endian, T: 'a + crate::Bits {
/// Wraps an `&[T: Bits]` in an `&BitSlice<E: Endian, T>`. The endianness
/// must be specified by the call site. The element type cannot be changed.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let src = vec![1u8, 2, 3];
/// let borrow: &[u8] = &src;
/// let bits: &BitSlice<BigEndian, _> = borrow.into();
/// assert_eq!(bits.len(), 24);
/// assert_eq!(bits.elts(), 3);
/// assert_eq!(bits.bits(), 0);
/// assert!(bits.get(7)); // src[0] == 0b0000_0001
/// assert!(bits.get(14)); // src[1] == 0b0000_0010
/// assert!(bits.get(22)); // src[2] == 0b0000_0011
/// assert!(bits.get(23));
/// # }
/// ```
fn from(src: &'a [T]) -> Self {
let (ptr, len): (*const T, usize) = (src.as_ptr(), src.len());
assert!(len <= T::MAX_ELT, "Source slice length out of range!");
unsafe {
// This is the correct construction of an `&BitSlice` wide pointer
// from a standard slice wide pointer.
#[allow(clippy::transmute_ptr_to_ptr)]
mem::transmute(
slice::from_raw_parts(ptr, len << T::BITS)
)
}
}
}
/// Builds a mutable `BitSlice` from a slice of mutable elements. The resulting
/// `BitSlice` will always completely fill the original slice, and will not have
/// a partial tail.
impl<'a, E, T> From<&'a mut [T]> for &'a mut BitSlice<E, T>
where E: crate::Endian, T: 'a + crate::Bits {
/// Wraps an `&mut [T: Bits]` in an `&mut BitSlice<E: Endian, T>`. The
/// endianness must be specified by the call site. The element type cannot
/// be changed.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let mut src = vec![1u8, 2, 3];
/// let borrow: &mut [u8] = &mut src;
/// let bits: &mut BitSlice<LittleEndian, _> = borrow.into();
/// // The first bit read is the LSb of the first element, which is set.
/// assert!(bits.get(0));
/// bits.set(0, false);
/// assert!(!bits.get(0));
/// # }
/// ```
fn from(src: &'a mut [T]) -> Self {
let (ptr, len): (*mut T, usize) = (src.as_mut_ptr(), src.len());
assert!(len <= T::MAX_ELT, "Source slice length out of range!");
unsafe {
// This is the correct construction of an `&BitSlice` wide pointer
// from a standard slice wide pointer.
#[allow(clippy::transmute_ptr_to_ptr)]
mem::transmute(
slice::from_raw_parts_mut(ptr, len << T::BITS)
)
}
}
}
/// Prints the `BitSlice` for debugging.
///
/// The output is of the form `BitSlice<E, T> [ELT, *]` where `<E, T>` is the
/// endianness and element type, with square brackets on each end of the bits
/// and all the elements of the array printed in binary. The printout is always
/// in semantic order, and may not reflect the underlying buffer. To see the
/// underlying buffer, use `.as_ref()`.
///
/// The alternate character `{:#?}` prints each element on its own line, rather
/// than having all elements on the same line.
#[cfg(feature = "alloc")]
impl<E, T> Debug for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
/// Renders the `BitSlice` type header and contents for debug.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bits: &BitSlice<LittleEndian, u16> = &bitvec![
/// LittleEndian, u16;
/// 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1,
/// 0, 1
/// ];
/// assert_eq!(
/// "BitSlice<LittleEndian, u16> [0101000011110101, 01]",
/// &format!("{:?}", bits)
/// );
/// # }
/// ```
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
let alt = fmt.alternate();
self.fmt_header(fmt)?;
fmt.write_str(" [")?;
if alt { writeln!(fmt)?; fmt.write_str(" ")?; }
self.fmt_body(fmt, true)?;
if alt { writeln!(fmt)?; }
fmt.write_str("]")
}
}
/// Prints the `BitSlice` for displaying.
///
/// This prints each element in turn, formatted in binary in semantic order (so
/// the first bit seen is printed first and the last bit seen is printed last).
/// Each element of storage is separated by a space for ease of reading.
///
/// The alternate character `{:#}` prints each element on its own line.
///
/// To see the in-memory representation, use `.as_ref()` to get access to the
/// raw elements and print that slice instead.
#[cfg(feature = "alloc")]
impl<E, T> Display for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
/// Renders the `BitSlice` contents for display.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bits: &BitSlice = &bitvec![0, 1, 0, 0, 1, 0, 1, 1, 0, 1];
/// assert_eq!("01001011 01", &format!("{}", bits));
/// # }
/// ```
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
self.fmt_body(fmt, false)
}
}
/// Writes the contents of the `BitSlice`, in semantic bit order, into a hasher.
impl<E, T> Hash for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
/// Writes each bit of the `BitSlice`, as a full `bool`, into the hasher.
fn hash<H>(&self, hasher: &mut H)
where H: Hasher {
for bit in self {
hasher.write_u8(bit as u8);
}
}
}
/// Produces a read-only iterator over all the bits in the `BitSlice`.
///
/// This iterator follows the ordering in the `BitSlice` type, and implements
/// `ExactSizeIterator` as `BitSlice` has a known, fixed length, and
/// `DoubleEndedIterator` as it has known ends.
impl<'a, E, T> IntoIterator for &'a BitSlice<E, T>
where E: crate::Endian, T: 'a + crate::Bits {
type Item = bool;
type IntoIter = Iter<'a, E, T>;
/// Iterates over the slice.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![1, 0, 1, 0, 1, 1, 0, 0];
/// let bref: &BitSlice = &bv;
/// let mut count = 0;
/// for bit in bref {
/// if bit { count += 1; }
/// }
/// assert_eq!(count, 4);
/// # }
/// ```
fn into_iter(self) -> Self::IntoIter {
self.into()
}
}
/// Performs unsigned addition in place on a `BitSlice`.
///
/// If the addend `BitSlice` is shorter than `self`, the addend is zero-extended
/// at the left (so that its final bit matches with `self`’s final bit). If the
/// addend is longer, the excess front length is unused.
///
/// Addition proceeds from the right ends of each slice towards the left.
/// Because this trait is forbidden from returning anything, the final carry-out
/// bit is discarded.
///
/// Note that, unlike `BitVec`, there is no subtraction implementation until I
/// find a subtraction algorithm that does not require modifying the subtrahend.
///
/// Subtraction can be implemented by negating the intended subtrahend yourself
/// and then using addition, or by using `BitVec`s instead of `BitSlice`s.
impl<'a, E, T> AddAssign<&'a BitSlice<E, T>> for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
/// Performs unsigned wrapping addition in place.
///
/// # Examples
///
/// This example shows addition of a slice wrapping from MAX to zero.
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let nums: [BitVec; 3] = [
/// bitvec![1, 1, 1, 0],
/// bitvec![1, 1, 1, 1],
/// bitvec![0, 0, 0, 0],
/// ];
/// let one = bitvec![0, 1];
/// let mut num = nums[0].clone();
/// let numr: &mut BitSlice = &mut num;
/// *numr += &one;
/// assert_eq!(numr, &nums[1] as &BitSlice);
/// *numr += &one;
/// assert_eq!(numr, &nums[2] as &BitSlice);
/// # }
/// ```
// Clippy thinks single-letter names are risky. This is generall an apt
// assumption, but here, the letters `a`, `b`, `c`, `y`, and `z` have
// fairly standardized, well-known meanings in digital arithmetic.
// For clarity, however:
// - a : The primary addend bit
// - b : The secondary addend bit
// - c : The carry-in bit
// - y : The sum bit
// - z : The carry-out bit
#[allow(clippy::many_single_char_names)]
fn add_assign(&mut self, addend: &'a BitSlice<E, T>) {
use core::iter::repeat;
// zero-extend the addend if it’s shorter than self
let mut addend_iter = addend.into_iter().rev().chain(repeat(false));
let mut c = false;
for place in (0 .. self.len()).rev() {
// See `BitVec::AddAssign`
static JUMP: [u8; 8] = [0, 2, 2, 1, 2, 1, 1, 3];
let a = self.get(place);
let b = addend_iter.next().unwrap(); // addend is an infinite source
let idx = ((c as u8) << 2) | ((a as u8) << 1) | (b as u8);
let yz = JUMP[idx as usize];
let (y, z) = (yz & 2 != 0, yz & 1 != 0);
self.set(place, y);
c = z;
}
}
}
/// Performs the Boolean `AND` operation against another bitstream and writes
/// the result into `self`. If the other bitstream ends before `self` does, it
/// is extended with zero, clearing all remaining bits in `self`.
impl<E, T, I> BitAndAssign<I> for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits, I: IntoIterator<Item=bool> {
/// `AND`s a bitstream into a slice.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let lhs: &mut BitSlice = &mut bitvec![0, 1, 0, 1, 0, 1];
/// let rhs = bitvec![0, 0, 1, 1];
/// *lhs &= rhs;
/// assert_eq!("000100", &format!("{}", lhs));
/// # }
/// ```
fn bitand_assign(&mut self, rhs: I) {
use core::iter::repeat;
for (idx, other) in (0 .. self.len()).zip(rhs.into_iter().chain(repeat(false))) {
let val = self.get(idx) & other;
self.set(idx, val);
}
}
}
/// Performs the Boolean `OR` operation against another bitstream and writes the
/// result into `self`. If the other bitstream ends before `self` does, it is
/// extended with zero, leaving all remaining bits in `self` as they were.
impl<E, T, I> BitOrAssign<I> for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits, I: IntoIterator<Item=bool> {
/// `OR`s a bitstream into a slice.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let lhs: &mut BitSlice = &mut bitvec![0, 1, 0, 1, 0, 1];
/// let rhs = bitvec![0, 0, 1, 1];
/// *lhs |= rhs;
/// assert_eq!("011101", &format!("{}", lhs));
/// # }
/// ```
fn bitor_assign(&mut self, rhs: I) {
for (idx, other) in (0 .. self.len()).zip(rhs.into_iter()) {
let val = self.get(idx) | other;
self.set(idx, val);
}
}
}
/// Performs the Boolean `XOR` operation against another bitstream and writes
/// the result into `self`. If the other bitstream ends before `self` does, it
/// is extended with zero, leaving all remaining bits in `self` as they were.
impl<E, T, I> BitXorAssign<I> for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits, I: IntoIterator<Item=bool> {
/// `XOR`s a bitstream into a slice.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let lhs: &mut BitSlice = &mut bitvec![0, 1, 0, 1, 0, 1];
/// let rhs = bitvec![0, 0, 1, 1];
/// *lhs ^= rhs;
/// assert_eq!("011001", &format!("{}", lhs));
/// # }
/// ```
fn bitxor_assign(&mut self, rhs: I) {
use core::iter::repeat;
for (idx, other) in (0 .. self.len()).zip(rhs.into_iter().chain(repeat(false))) {
let val = self.get(idx) ^ other;
self.set(idx, val);
}
}
}
/// Indexes a single bit by semantic count. The index must be less than the
/// length of the `BitSlice`.
impl<'a, E, T> Index<usize> for &'a BitSlice<E, T>
where E: crate::Endian, T: 'a + crate::Bits {
type Output = bool;
/// Looks up a single bit by semantic count.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![0, 0, 1, 0, 0];
/// let bits: &BitSlice = &bv;
/// assert!(bits[2]);
/// assert!(!bits[3]);
/// # }
/// ```
fn index(&self, index: usize) -> &Self::Output {
if self.get(index) { &true} else { &false }
}
}
/// Indexes a single bit by element and bit index within the element. The
/// element index must be less than the length of the underlying store, and the
/// bit index must be less than the width of the underlying element.
///
/// This index is not recommended for public use.
impl<'a, E, T> Index<(usize, u8)> for &'a BitSlice<E, T>
where E: crate::Endian, T: 'a + crate::Bits {
type Output = bool;
/// Looks up a single bit by storage element and bit indices. The bit index
/// is still a semantic count, not an absolute index into the element.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let mut bv = bitvec![0; 10];
/// bv.push(true);
/// let bits: &BitSlice = &bv;
/// assert!(bits[(1, 2)]); // 10
/// assert!(!bits[(1, 1)]); // 9
/// # }
/// ```
fn index(&self, (elt, bit): (usize, u8)) -> &Self::Output {
if self.get(T::join(elt, bit)) { &true } else { &false }
}
}
/// Performs fixed-width 2’s-complement negation of a `BitSlice`.
///
/// Unlike the `!` operator (`Not` trait), the unary `-` operator treats the
/// `BitSlice` as if it represents a signed 2’s-complement integer of fixed
/// width. The negation of a number in 2’s complement is defined as its
/// inversion (using `!`) plus one, and on fixed-width numbers has the following
/// discontinuities:
///
/// - A slice whose bits are all zero is considered to represent the number zero
/// which negates as itself.
/// - A slice whose bits are all one is considered to represent the most
/// negative number, which has no correpsonding positive number, and thus
/// negates as zero.
///
/// This behavior was chosen so that all possible values would have *some*
/// output, and so that repeated application converges at idempotence. The most
/// negative input can never be reached by negation, but `--MOST_NEG` converges
/// at the least unreasonable fallback value, 0.
///
/// Because `BitSlice` cannot move, the negation is performed in place.
impl<'a, E, T> Neg for &'a mut BitSlice<E, T>
where E: crate::Endian, T: 'a + crate::Bits {
type Output = Self;
/// Perform 2’s-complement fixed-width negation.
///
/// # Examples
///
/// The contortions shown here are a result of this operator applying to a
/// mutable reference, and this example balancing access to the original
/// `BitVec` for comparison with aquiring a mutable borrow *as a slice* to
/// ensure that the `BitSlice` implementation is used, not the `BitVec`.
///
/// Negate an arbitrary positive number (first bit unset).
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let mut num = bitvec![0, 1, 1, 0];
/// - (&mut num as &mut BitSlice);
/// assert_eq!(num, bitvec![1, 0, 1, 0]);
/// # }
/// ```
///
/// Negate an arbitrary negative number. This example will use the above
/// result to demonstrate round-trip correctness.
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let mut num = bitvec![1, 0, 1, 0];
/// - (&mut num as &mut BitSlice);
/// assert_eq!(num, bitvec![0, 1, 1, 0]);
/// # }
/// ```
///
/// Negate the most negative number, which will become zero, and show
/// convergence at zero.
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let zero = bitvec![0; 10];
/// let mut num = bitvec![1; 10];
/// - (&mut num as &mut BitSlice);
/// assert_eq!(num, zero);
/// - (&mut num as &mut BitSlice);
/// assert_eq!(num, zero);
/// # }
/// ```
fn neg(self) -> Self::Output {
if self.is_empty() || self.not_any() {
return self;
}
let _ = Not::not(&mut *self);
// Fill an element with all 1 bits
let elt: [T; 1] = [!T::default()];
if self.any() {
// Turn a slice reference `[T; 1]` into a bit-slice reference
// `[u1; 1]`
let addend: &BitSlice<E, T> = {
// This is safe because an instance of `&[T; 1]` has structure
// `{ ptr: _, len: 1 }` and that structure when interpreted as
// an `&BitSlice` refers to a slice of a single bit. Conversion
// from slice to `BitSlice` is a strictly narrowing operation,
// and is not a fault.
#[allow(clippy::transmute_ptr_to_ptr)]
unsafe { mem::transmute::<&[T], &BitSlice<E, T>>(&elt) }
};
// And add it (if the slice was not all-ones).
AddAssign::add_assign(&mut *self, addend);
}
self
}
}
/// Flips all bits in the slice, in place.
///
/// This invokes the `!` operator on each element of the borrowed storage, and
/// so it will also flip bits in the tail that are outside the `BitSlice` length
/// if any. Use `^= repeat(true)` to flip only the bits actually inside the
/// `BitSlice` purview. `^=` also has the advantage of being a borrowing
/// operator rather than a consuming/returning operator.
impl<'a, E, T> Not for &'a mut BitSlice<E, T>
where E: crate::Endian, T: 'a + crate::Bits {
type Output = Self;
/// Inverts all bits in the slice.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let mut bv = bitvec![0; 10];
/// let bits: &mut BitSlice = &mut bv;
/// let new_bits = !bits;
/// // The `bits` binding is consumed by the `!` operator, and a new reference
/// // is returned.
/// // assert_eq!(bits.as_ref(), &[!0, !0]);
/// assert_eq!(new_bits.as_ref(), &[!0, !0]);
/// # }
/// ```
fn not(self) -> Self::Output {
for elt in self.as_mut() {
*elt = !*elt;
}
self
}
}
__bitslice_shift!(u8, u16, u32, u64, i8, i16, i32, i64);
/// Shifts all bits in the array to the left — **DOWN AND TOWARDS THE FRONT**.
///
/// On primitives, the left-shift operator `<<` moves bits away from the origin
/// and towards the ceiling. This is because we label the bits in a primitive
/// with the minimum on the right and the maximum on the left, which is
/// big-endian bit order. This increases the value of the primitive being
/// shifted.
///
/// **THAT IS NOT HOW `BitSlice` WORKS!**
///
/// `BitSlice` defines its layout with the minimum on the left and the maximum
/// on the right! Thus, left-shifting moves bits towards the **minimum**.
///
/// In BigEndian order, the effect in memory will be what you expect the `<<`
/// operator to do.
///
/// **In LittleEndian order, the effect will be equivalent to using `>>` on**
/// **the primitives in memory!**
///
/// # Notes
///
/// In order to preserve the effecs in memory that this operator traditionally
/// expects, the bits that are emptied by this operation are zeroed rather than
/// left to their old value.
///
/// The shift amount is modulated against the array length, so it is not an
/// error to pass a shift amount greater than the array length.
///
/// A shift amount of zero is a no-op, and returns immediately.
impl<E, T> ShlAssign<usize> for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
/// Shifts a slice left, in place.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let mut bv = bitvec![1, 1, 1, 0, 0, 0, 0, 0, 1];
/// let bits: &mut BitSlice = &mut bv;
/// *bits <<= 3;
/// assert_eq!("00000100 0", &format!("{}", bits));
/// // ^ former tail
/// # }
/// ```
// Clippy errors when it sees arithmetic ops in an arithmetic impl that are
// not the operation being implemented. Clippy is, at times, foolish.
#[allow(clippy::suspicious_op_assign_impl)]
fn shl_assign(&mut self, shamt: usize) {
let len = self.len();
// Bring the shift amount down into the slice's domain.
let shamt = shamt % len;
// If the shift amount was an even multiple of the length, exit.
if shamt == 0 {
return;
}
// If the shift amount is an even multiple of the element width, use
// ptr::copy instead of a bitwise crawl
if shamt & T::MASK as usize == 0 {
// Compute the shift distance measured in elements.
let offset = shamt >> T::BITS;
// Compute the number of elements that will remain.
let rem = self.raw_len() - offset;
// Memory model: suppose we have this slice of sixteen elements,
// that is shifted five elements to the left. We have three
// pointers and two lengths to manage.
// - rem is 11
// - offset is 5
// - head is [0]
// - body is [5; 11]
// - tail is [11]
// [ 0 1 2 3 4 5 6 7 8 9 a b c d e f ]
// ^-------before------^
// ^-------after-------^ 0 0 0 0 0
// Pointer to the front of the slice
let head: *mut T = self.as_mut_ptr();
// Pointer to the front of the section that will move and be
// retained
let body: *const T = &self.as_ref()[offset];
// Pointer to the back of the slice that will be zero-filled.
let tail: *mut T = &mut self.as_mut()[rem];
unsafe {
ptr::copy(body, head, rem);
ptr::write_bytes(tail, 0, offset);
}
return;
}
// If the shift amount is not an even multiple, do a bitwise crawl and
// move bits forward, then zero-fill the back.
// Same general logic as above, but bit-level instead of element-level.
for (to, from) in (shamt .. len).enumerate() {
let val = self.get(from);
self.set(to, val);
}
for bit in (len - shamt) .. len {
self.set(bit, false);
}
}
}
/// Shifts all bits in the array to the right — **UP AND TOWARDS THE BACK**.
///
/// On primitives, the right-shift operator `>>` moves bits towards the origin
/// and away from the ceiling. This is because we label the bits in a primitive
/// with the minimum on the right and the maximum on the left, which is
/// big-endian bit order. This decreases the value of the primitive being
/// shifted.
///
/// **THAT IS NOT HOW `BitSlice` WORKS!**
///
/// `BitSlice` defines its layout with the minimum on the left and the maximum
/// on the right! Thus, right-shifting moves bits towards the **maximum**.
///
/// In Big-Endian order, the effect in memory will be what you expect the `>>`
/// operator to do.
///
/// **In LittleEndian order, the effect will be equivalent to using `<<` on**
/// **the primitives in memory!**
///
/// # Notes
///
/// In order to preserve the effects in memory that this operator traditionally
/// expects, the bits that are emptied by this operation are zeroed rather than
/// left to their old value.
///
/// The shift amount is modulated against the array length, so it is not an
/// error to pass a shift amount greater than the array length.
///
/// A shift amount of zero is a no-op, and returns immediately.
impl<E, T> ShrAssign<usize> for BitSlice<E, T>
where E: crate::Endian, T: crate::Bits {
/// Shifts a slice right, in place.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let mut bv = bitvec![1, 0, 0, 0, 0, 0, 1, 1, 1];
/// let bits: &mut BitSlice = &mut bv;
/// *bits >>= 3;
/// assert_eq!("00010000 0", &format!("{}", bits));
/// // ^ former head
/// # }
/// ```
// Clippy errors when it sees arithmetic ops in an arithmetic impl that are
// not the operation being implemented. Clippy is, at times, foolish.
#[allow(clippy::suspicious_op_assign_impl)]
fn shr_assign(&mut self, shamt: usize) {
let len = self.len();
// Bring the shift amount down into the slice's domain.
let shamt = shamt % len;
// If the shift amount was an even multiple of the length, exit.
if shamt == 0 {
return;
}
// If the shift amount is an even multiple of the element width, use
// ptr::copy instead of a bitwise crawl.
if shamt & T::MASK as usize == 0 {
// Compute the shift amount measured in elements.
let offset = shamt >> T::BITS;
// Compute the number of elements that will remain.
let rem = self.raw_len() - offset;
// Memory model: suppose we have this slice of sixteen elements,
// that is shifted five elements to the right. We have two pointers
// and two lengths to manage.
// - rem is 11
// - offset is 5
// - head is [0; 11]
// - body is [5]
// [ 0 1 2 3 4 5 6 7 8 9 a b c d e f ]
// ^-------before------^
// 0 0 0 0 0 ^-------after-------^
let head: *mut T = self.as_mut_ptr();
let body: *mut T = &mut self.as_mut()[offset];
unsafe {
ptr::copy(head, body, rem);
ptr::write_bytes(head, 0, offset);
}
return;
}
for (from, to) in (shamt .. len).enumerate().rev() {
let val = self.get(from);
self.set(to, val);
}
for bit in 0 .. shamt {
self.set(bit, false);
}
}
}
/// Permits iteration over a `BitSlice`
#[doc(hidden)]
pub struct Iter<'a, E, T>
where E: 'a + crate::Endian, T: 'a + crate::Bits {
inner: &'a BitSlice<E, T>,
head: usize,
tail: usize,
}
impl<'a, E, T> Iter<'a, E, T>
where E: 'a + crate::Endian, T: 'a + crate::Bits {
fn reset(&mut self) {
self.head = 0;
self.tail = self.inner.len();
}
}
impl<'a, E, T> DoubleEndedIterator for Iter<'a, E, T>
where E: 'a + crate::Endian, T: 'a + crate::Bits {
fn next_back(&mut self) -> Option<Self::Item> {
if self.tail > self.head {
self.tail -= 1;
Some(self.inner.get(self.tail))
}
else {
self.reset();
None
}
}
}
impl<'a, E, T> ExactSizeIterator for Iter<'a, E, T>
where E: 'a + crate::Endian, T: 'a + crate::Bits {
fn len(&self) -> usize {
self.tail - self.head
}
}
impl<'a, E, T> From<&'a BitSlice<E, T>> for Iter<'a, E, T>
where E: 'a + crate::Endian, T: 'a + crate::Bits {
fn from(src: &'a BitSlice<E, T>) -> Self {
let len = src.len();
Self {
inner: src,
head: 0,
tail: len,
}
}
}
impl<'a, E, T> Iterator for Iter<'a, E, T>
where E: 'a + crate::Endian, T: 'a + crate::Bits {
type Item = bool;
fn next(&mut self) -> Option<Self::Item> {
if self.head < self.tail {
let ret = self.inner.get(self.head);
self.head += 1;
Some(ret)
}
else {
self.reset();
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let rem = ExactSizeIterator::len(self);
(rem, Some(rem))
}
/// Counts how many bits are live in the iterator, consuming it.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![BigEndian, u8; 0, 1, 0, 1, 0];
/// assert_eq!(bv.iter().count(), 5);
/// # }
/// ```
fn count(self) -> usize {
ExactSizeIterator::len(&self)
}
/// Advances the iterator by `n` bits, starting from zero.
///
/// It is not an error to advance past the end of the iterator! Doing so
/// returns `None`, and resets the iterator to its beginning.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![BigEndian, u8; 0, 0, 0, 1];
/// let mut bv_iter = bv.iter();
/// assert_eq!(bv_iter.len(), 4);
/// assert!(bv_iter.nth(3).unwrap());
/// # }
/// ```
///
/// This example intentionally overshoots the iterator bounds, which causes
/// a reset to the initial state. It then demonstrates that `nth` is
/// stateful, and is not an absolute index, by seeking ahead by two (to the
/// third zero bit) and then taking the bit immediately after it, which is
/// set. This shows that the argument to `nth` is how many bits to discard
/// before yielding the next.
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![BigEndian, u8; 0, 0, 0, 1];
/// let mut bv_iter = bv.iter();
/// assert!(bv_iter.nth(4).is_none());
/// assert!(!bv_iter.nth(2).unwrap());
/// assert!(bv_iter.nth(0).unwrap());
/// # }
/// ```
fn nth(&mut self, n: usize) -> Option<bool> {
self.head = self.head.saturating_add(n);
self.next()
}
/// Consumes the iterator, returning only the last bit.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![BigEndian, u8; 0, 0, 0, 1];
/// assert!(bv.into_iter().last().unwrap());
/// # }
/// ```
///
/// Empty iterators return `None`
///
/// ```rust
/// # #[cfg(feature = "alloc")] {
/// use bitvec::*;
/// let bv = bitvec![];
/// assert!(bv.into_iter().last().is_none());
/// # }
/// ```
fn last(mut self) -> Option<bool> {
self.next_back()
}
}