1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
//! **bitstream** is a crate for dealing with single bit input and output
//!
//! This crate provides a writer that can write single bits to an
//! underlying Write implementation, and read them back using a reader
//! implementation.

use std::io::{Write, Read};
use std::io::Result as IOResult;

pub mod padding;
pub use padding::{Padding, NoPadding, LengthPadding};

/// **BitWriter** is a writer for single bit values
///
/// Bits will be grouped to a single byte before writing to the inner writer.
/// The first Bit will be the most significant bit of the byte.
///
/// When dropping this writer, any remaining bits will be written according to the padding used.
/// The default padding is [NoPadding](struct.NoPadding.html)
///
/// # Examples
///
/// ```
/// extern crate bitstream;
///
/// let vec = Vec::new();
/// let mut bit_writer = bitstream::BitWriter::new(vec);
///
/// assert!(bit_writer.write_bit(true).is_ok());
/// assert!(bit_writer.write_bit(false).is_ok());
/// ```
pub struct BitWriter<W, P> where W: Write, P: Padding {
    inner: W,
    padder: P,
    last_byte: u8,
    last_fill: u8,
}


/// **BitReader** is a reader for single bit values
///
/// This reader expects the last byte in the input to contain the number of significant bits in the
/// second to last byte. This is the same format produced by [BitWriter]
///
/// # Examples
/// ```
/// extern crate bitstream;
/// use std::io::Cursor;
///
/// let vec = vec![192, 2];
/// let mut bit_reader = bitstream::BitReader::new(Cursor::new(vec));
/// let first_read = bit_reader.read_bit();
/// assert!(first_read.is_ok());
/// let option = first_read.unwrap();
/// assert!(option.is_some());
/// assert!(option.unwrap());
/// ```
pub struct BitReader<R, P> where R: Read, P: Padding {
    padder: P,
    inner: R,
    ended: bool,
    fill: usize,
    current: u8,
    buffer: Box<[u8]>,
    bits_left: usize,
}


impl<W> BitWriter<W, NoPadding> where W: Write {
    /// Create a new BitWriter with no padding, writing to the inner writer.
    pub fn new(write: W) -> Self {
        BitWriter::with_padding(write, NoPadding::new())
    }
}

impl<W, P> BitWriter<W, P> where W: Write, P: Padding {
    /// Create a new BitWriter with the given padding
    pub fn with_padding(write: W, padder: P) -> Self {
        BitWriter {
            inner: write,
            padder: padder,
            last_byte: 0,
            last_fill: 0,
        }
    }

    /// Write a single bit to the inner writer.
    ///
    /// # Failures
    /// Returns an error if the inner writer returns an error
    pub fn write_bit(&mut self, bit: bool) -> IOResult<()> {
        if bit {
            let data = 128u8 >> self.last_fill;
            self.last_byte |= data;
        }

        self.last_fill += 1;
        if self.last_fill == 8 {
            self.inner.write_all(&[self.last_byte])?;
            self.last_byte = 0;
            self.last_fill = 0
        }
        Ok(())
    }
}

impl<W, P> Drop for BitWriter<W, P> where W: Write, P: Padding {
    fn drop(&mut self) {
        let _ = self.padder.pad(self.last_byte, self.last_fill, &mut self.inner);
    }
}


impl<R> BitReader<R, NoPadding> where R: Read {
    /// Create a new BitReader, with no padding, reading from the inner reader.
    pub fn new(reader: R) -> Self {
        BitReader::with_padding(reader, NoPadding::new())
    }
}

impl<R, P> BitReader<R, P> where R: Read, P: Padding {

    /// Create a new BitReader, using the supplied padding.
    ///
    /// This can be used to supply a custom padding to the bit reader.
    ///
    /// # Examples
    /// ```
    /// extern crate bitstream;
    /// use std::io::Cursor;
    ///
    /// let vec = vec![192, 2];
    /// let mut bit_reader = bitstream::BitReader::with_padding(Cursor::new(vec),
    ///                                                         bitstream::LengthPadding::new());
    /// let _ = bit_reader.read_bit();
    /// let _ = bit_reader.read_bit();
    /// let last = bit_reader.read_bit();
    /// assert!(last.is_ok());
    /// /// None indicates there is nothing left to read
    /// assert!(last.unwrap().is_none());
    /// ```
    pub fn with_padding(reader: R, padder: P) -> Self {
        let buf_size = padder.max_size() + 1;
        let buffer = vec![0; buf_size];

        BitReader {
            inner: reader,
            padder: padder,
            fill: 0,
            ended: false,
            buffer: buffer.into_boxed_slice(),
            current: 0,
            bits_left: 0,
        }
    }

    fn fill_buffer(&mut self) -> IOResult<()> {
        while !self.ended && self.fill != self.buffer.len() {
            match self.inner.read(&mut self.buffer[self.fill..]) {
                Ok(0) => {
                    self.ended = true;
                    let buf_pad_start = if self.fill < self.buffer.len() {
                        0
                    } else {
                        1
                    };
                    self.bits_left = self.padder.bits_left(&self.buffer[buf_pad_start..self.fill])?;
                }
                Ok(n) => {
                    self.fill += n;
                    self.bits_left = 8;
                }
                Err(e) => return Err(e),
            }
        }
        Ok(())
    }

    /// Read a single bit.
    ///
    /// End of stream is signaled by returning  `Ok(None)`
    ///
    /// # Failures
    /// Will return an error if the inner reader returns one
    pub fn read_bit(&mut self) -> IOResult<Option<bool>> {
        self.fill_buffer()?;
        if self.bits_left == 0 {
            Ok(None)
        } else {
            let res = (self.buffer[0] & (128u8 >> self.current)) == (128u8 >> self.current);
            self.current += 1;
            self.bits_left -= 1;

            if self.current == 8 {
                self.current = 0;
                self.fill -= 1;
                unsafe {
                    std::ptr::copy(self.buffer[1..].as_ptr(), self.buffer[..].as_mut_ptr(), self.buffer.len() - 1);
                }
            }
            Ok(Some(res))
        }
    }
}

impl<R, P> Iterator for BitReader<R, P> where R: Read, P: Padding {
    type Item = bool;

    fn next(&mut self) -> Option<Self::Item> {
        match self.read_bit() {
            Ok(opt) => opt,
            Err(_) => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::io::Cursor;

    #[test]
    fn test_writer_no_pad() {
        let mut vec = Vec::new();
        {
            let mut bit_writer = BitWriter::new(&mut vec);
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
        }
        assert_eq!(vec.len(), 2);
        assert_eq!(vec[0], 217);
        assert_eq!(vec[1], 192);
    }

    #[test]
    fn test_writer_no_pad_empty() {
        let mut vec = Vec::new();
        {
            BitWriter::new(&mut vec);
        }
        assert_eq!(vec.len(), 0);
    }

    #[test]
    fn test_reader_no_pad() {
        let mut vec = Cursor::new(vec![200, 192]);
        let mut bit_reader = BitReader::new(&mut vec);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert!(bit_reader.read_bit().unwrap().is_none());
    }

    #[test]
    fn test_reader_no_pad_empty() {
        let mut vec = Cursor::new(&[]);
        let mut bit_reader = BitReader::new(&mut vec);
        assert!(bit_reader.read_bit().unwrap().is_none());
    }

    #[test]
    fn test_writer_length_pad() {
        let mut vec = Vec::new();
        {
            let mut bit_writer = BitWriter::with_padding(&mut vec, LengthPadding::new());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
        }
        assert_eq!(vec.len(), 3);
        assert_eq!(vec[0], 217);
        assert_eq!(vec[1], 192);
        assert_eq!(vec[2], 2);
    }

    #[test]
    fn test_writer_length_pad_empty() {
        let mut vec = Vec::new();
        {
            BitWriter::with_padding(&mut vec, LengthPadding::new());
        }
        assert_eq!(vec.len(), 1);
        assert_eq!(vec[0], 8);
    }

    #[test]
    fn test_write_read_length_pad_empty() {
        let mut vec = Vec::new();
        {
            BitWriter::with_padding(&mut vec, LengthPadding::new());
        }
        {
            let mut cur = Cursor::new(&vec);
            let mut bit_reader = BitReader::with_padding(&mut cur, LengthPadding::new());
            assert!(bit_reader.read_bit().unwrap().is_none());
        }
    }

    #[test]
    fn test_write_read_length_pad() {
        let mut vec = Vec::new();
        {
            let mut bit_writer = BitWriter::with_padding(&mut vec, LengthPadding::new());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
        }
        {
            let mut cur = Cursor::new(&vec);
            let mut bit_reader = BitReader::with_padding(&mut cur, LengthPadding::new());
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert!(bit_reader.read_bit().unwrap().is_none());
        }
    }
}