1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//! **bitstream** is a crate for dealing with single bit input and output
//!
//! This crate provides a writer that can write single bits to an
//! underlying Write implementation, and read them back using a reader
//! implementation.

use std::io::{Write, Read};
use std::io::Result as IOResult;

/// **BitWriter** is a writer for single bit values
///
/// Bits will be grouped to a single byte before writing to the inner writer.
/// The first Bit will be the most significant bit of the byte.
///
/// When dropping this writer, any remaining bits will be written as well as an additional byte
/// containing how many bits are significant in the last data byte. This means you can write any
/// number of bits, they do not need to align to multiples of 8.
///
/// # Examples
///
/// ```
/// extern crate bitstream;
///
/// let mut vec = Vec::new();
/// let mut bit_writer = bitstream::BitWriter::new(vec);
///
/// assert!(bit_writer.write_bit(true).is_ok());
/// assert!(bit_writer.write_bit(false).is_ok());
/// ```
pub struct BitWriter<W> where W: Write {
    inner: W,
    last_byte: u8,
    last_fill: u8,
}


/// **BitReader** is a reader for single bit values
///
/// This reader expects the last byte in the input to contain the number of significant bits in the
/// second to last byte. This is the same format produced by [BitWriter]
///
/// # Examples
/// ```
/// extern crate bitstream;
/// use std::io::Cursor;
///
/// let mut vec = vec![192, 2];
/// let mut bit_reader = bitstream::BitReader::new(Cursor::new(vec));
/// let first_read = bit_reader.read_bit();
/// assert!(first_read.is_ok());
/// let option = first_read.unwrap();
/// assert!(option.is_some());
/// assert!(option.unwrap());
/// ```
pub struct BitReader<R> where R: Read {
    inner: R,
    ended: bool,
    fill: u8,
    current: u8,
    buffer: [u8; 3],
    byte_fill: u8,
}

impl<W> BitWriter<W> where W: Write {
    /// Create a new BitWriter, writing to the inner writer.
    pub fn new(write: W) -> Self {
        BitWriter {
            inner: write,
            last_byte: 0,
            last_fill: 0,
        }
    }

    /// Write a single bit to the inner writer.
    ///
    /// # Failures
    /// Returns an error if the inner writer returns an error
    pub fn write_bit(&mut self, bit: bool) -> IOResult<()> {
        if bit {
            let data = 128u8 >> self.last_fill;
            self.last_byte |= data;
        }

        self.last_fill += 1;
        if self.last_fill == 8 {
            self.inner.write_all(&[self.last_byte])?;
            self.last_byte = 0;
            self.last_fill = 0
        }
        Ok(())
    }
}

impl<W> Drop for BitWriter<W> where W: Write {
    fn drop(&mut self) {
        if self.last_fill > 0 {
            let _ = self.inner.write_all(&[self.last_byte, self.last_fill]);
        } else {
            let _ = self.inner.write_all(&[8u8]);
        }
    }
}


impl<R> BitReader<R> where R: Read {
    /// Create a new BitReader, reading from the inner reader.
    pub fn new(reader: R) -> Self {
        BitReader {
            inner: reader,
            fill: 0,
            ended: false,
            buffer: [0, 0, 0],
            current: 0,
            byte_fill: 8,
        }
    }

    fn fill_buffer(&mut self) -> IOResult<()> {
        while !self.ended && self.fill != 3 {
            match self.inner.read(&mut self.buffer[self.fill as usize..]) {
                Ok(0) => {
                    self.ended = true;
                    self.fill -= 1;
                    self.byte_fill = self.buffer[self.fill as usize];
                },
                Ok(n) => self.fill += n as u8,
                Err(e) => return Err(e),
            }
        }
        Ok(())
    }

    /// Read a single bit.
    ///
    /// End of stream is signaled by returning  `Ok(None)`
    ///
    /// # Failures
    /// Will return an error if the inner reader returns one
    pub fn read_bit(&mut self) -> IOResult<Option<bool>> {
        if self.fill > 0 && self.current == self.byte_fill {
            self.buffer = [self.buffer[1], self.buffer[2], 0];
            self.current = 0;
            self.fill -= 1;
        }
        self.fill_buffer()?;
        if self.fill > 0 {
            let res = (self.buffer[0] & (128u8 >> self.current)) == (128u8 >> self.current);
            self.current += 1;
            Ok(Some(res))
        } else {
            Ok(None)
        }
    }
}

impl<R> Iterator for BitReader<R> where R: Read {
    type Item = bool;

    fn next(&mut self) -> Option<Self::Item> {
        match self.read_bit() {
            Ok(opt) => opt,
            Err(_) => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::io::Cursor;

    #[test]
    fn test_writer() {
        let mut vec = Vec::new();
        {
            let mut bit_writer = BitWriter::new(&mut vec);
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
        }
        assert_eq!(vec.len(), 3);
        assert_eq!(vec[0], 217);
        assert_eq!(vec[1], 192);
        assert_eq!(vec[2], 2);
    }

    #[test]
    fn test_reader() {
        let mut vec = Cursor::new(vec![200, 192, 2]);
        let mut bit_reader = BitReader::new(&mut vec);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
        assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
        assert!(bit_reader.read_bit().unwrap().is_none());
    }

    #[test]
    fn test_write_read() {
        let mut vec = Vec::new();
        {
            let mut bit_writer = BitWriter::new(&mut vec);
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(false).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
            assert!(bit_writer.write_bit(true).is_ok());
        }
        {
            let mut cur = Cursor::new(&vec);
            let mut bit_reader = BitReader::new(&mut cur);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), false);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert_eq!(bit_reader.read_bit().unwrap().unwrap(), true);
            assert!(bit_reader.read_bit().unwrap().is_none());
        }
    }
}