1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
use proc_macro::{Span, TokenStream};
use quote::quote;
use syn::{Error, Ident, ItemEnum, Result};
/// An attribute macro that transforms an C-like enum into a bitflag struct implementing an type API
/// similar to the `bitflags` crate, and implementing traits as listed below.
///
/// # Generated trait implementatations
/// This macro generates some trait implementations: [`fmt::Debug`], [`ops:Not`], [`ops:BitAnd`],
/// [`ops:BitOr`], [`ops:BitXor`], [`ops:BitAndAssign`], [`ops:BitOrAssign`], [`ops:BitXorAssign`],
/// [`fmt::Binary`], [`fmt::LowerHex`], [`fmt::UpperHex`], [`fmt::Octal`], [`From`]
///
/// # Example
///
/// ```
/// use bitflag_attr::bitflag;
///
/// #[bitflag(u32)]
/// #[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Hash)]
/// pub enum Flags {
/// /// The value `A`, at bit position `0`.
/// A = 0b00000001,
/// /// The value `B`, at bit position `1`.
/// B = 0b00000010,
/// /// The value `C`, at bit position `2`.
/// C = 0b00000100,
///
/// /// The combination of `A`, `B`, and `C`.
/// ABC = A | B | C,
/// }
/// ```
///
/// # Syntax
///
/// ```text
/// #[bitflag($ty)]
/// $visibility enum $StructName {
/// FlagOne = flag1_value_expr,
/// FlagTwo = flag2_value_expr,
/// // ...
/// FlagN = flagn_value_expr,
/// }
/// ```
///
/// [`fmt::Debug`]: core::fmt::Debug
/// [`ops:Not`]: core::ops::Not
/// [`ops:BitAnd`]: core::ops::BitAnd
/// [`ops:BitOr`]: core::ops::BitOr
/// [`ops:BitXor`]: core::ops::BitXor
/// [`ops:BitAndAssign`]: core::ops::BitAndAssign
/// [`ops:BitOrAssign`]: core::ops::BitOrAssign
/// [`ops:BitXorAssign`]: core::ops::BitXorAssign
/// [`fmt::Binary`]: core::fmt::Binary
/// [`fmt::LowerHex`]: core::fmt::LowerHex
/// [`fmt::UpperHex`]: core::fmt::UpperHex
/// [`fmt::Octal`]: core::fmt::Octal
/// [`From`]: From
#[proc_macro_attribute]
pub fn bitflag(attr: TokenStream, item: TokenStream) -> TokenStream {
match bitflag_impl(attr, item) {
Ok(ts) => ts,
Err(err) => err.into_compile_error().into(),
}
}
fn bitflag_impl(attr: TokenStream, item: TokenStream) -> Result<TokenStream> {
let ty = parse_ty(attr)?;
let item: ItemEnum = syn::parse(item)?;
let vis = item.vis;
let attrs = item.attrs;
let ty_name = item.ident;
let number_flags = item.variants.len();
let mut all_flags = Vec::with_capacity(number_flags);
let mut all_flags_names = Vec::with_capacity(number_flags);
// The raw flags as private itens to allow defyning flags referencing other flag definitions
let mut raw_flags = Vec::with_capacity(number_flags);
let mut flags = Vec::with_capacity(number_flags); // Associated constants
for variant in item.variants.iter() {
let var_attrs = &variant.attrs;
let var_name = &variant.ident;
let expr = match variant.discriminant.as_ref() {
Some((_, expr)) => expr,
None => return Err(Error::new_spanned(variant, "a discrimiant must be defined")),
};
all_flags.push(quote!(Self::#var_name));
all_flags_names.push(quote!(stringify!(#var_name)));
flags.push(quote! {
#(#var_attrs)*
#vis const #var_name: #ty_name = Self(#expr);
});
raw_flags.push(quote! {
#(#var_attrs)*
#[allow(non_upper_case_globals)]
const #var_name: #ty = #expr;
});
}
let generated = quote! {
#[repr(transparent)]
#(#attrs)*
#vis struct #ty_name(#ty);
#(#raw_flags)*
#[allow(non_upper_case_globals)]
impl #ty_name {
#(#flags)*
/// Return the underlying bits of the bitflag
#[inline]
#vis const fn bits(&self) -> #ty {
self.0
}
/// Converts from a `bits` value. Returning [`None`] is any unknown bits are set.
#[inline]
#vis const fn from_bits(bits: #ty) -> Option<Self> {
let truncated = Self::from_bits_truncate(bits).0;
if truncated == bits {
Some(Self(bits))
} else {
None
}
}
/// Convert from `bits` value, unsetting any unknown bits.
#[inline]
#vis const fn from_bits_truncate(bits: #ty) -> Self {
Self(bits & Self::all().0)
}
/// Convert from `bits` value exactly.
#[inline]
#vis const fn from_bits_retain(bits: #ty) -> Self {
Self(bits)
}
/// Construct an empty bitflag.
#[inline]
#vis const fn empty() -> Self {
Self(0)
}
/// Returns `true` if the flag is empty.
#[inline]
#vis const fn is_empty(&self) -> bool {
self.0 == 0
}
/// Returns a bitflag that constains all value.
///
/// This will include bits that do not have any flags/meaning.
/// Use [`all`](Self::all) if you want only the specified flags set.
#[inline]
#vis const fn all_bits() -> Self {
Self(!0)
}
/// Returns `true` if the bitflag constains all value bits set.
///
/// This will check for all bits.
/// Use [`is_all`](Self::is_all) if you want to check for all specified flags.
#[inline]
#vis const fn is_all_bits(&self) -> bool {
self.0 == !0
}
/// Construct a bitflag with all flags set.
///
/// This will only set the flags specified as associated constant.
#[inline]
#vis const fn all() -> Self {
Self(#(#all_flags.0 |)* 0)
}
/// Returns `true` if the bitflag contais all flags.
///
#[inline]
#vis const fn is_all(&self) -> bool {
self.0 == Self::all().0
}
/// Returns a bit flag that only has bits corresponding to the specified flags as associated constant.
#[inline]
#vis const fn truncate(&self) -> Self {
Self(self.0 & Self::all().0)
}
/// Returns `true` if this bitflag intersects with any value in `other`.
///
/// This is equivalent to `(self & other) != Self::empty()`
#[inline]
#vis const fn intersects(&self, other: Self) -> bool {
(self.0 & other.0) != Self::empty().0
}
/// Returns `true` if this bitflag contains all values of `other`.
///
/// This is equivalent to `(self & other) == other`
#[inline]
#vis const fn contains(&self, other: Self) -> bool {
(self.0 & other.0) == other.0
}
/// Returns the bitwise NOT of the flag.
#[inline]
#[doc(alias = "complement")]
#vis const fn not(self) -> Self {
Self(!self.0)
}
/// Returns the bitwise AND of the flag.
#[inline]
#[doc(alias = "intersection")]
#vis const fn and(self, other: Self) -> Self {
Self(self.0 & other.0)
}
/// Returns the bitwise OR of the flag with `other`.
#[inline]
#[doc(alias = "union")]
#vis const fn or(self, other: Self) -> Self {
Self(self.0 | other.0)
}
/// Returns the bitwise XOR of the flag with `other`.
#[inline]
#[doc(alias = "symmetric_difference")]
#vis const fn xor(self, other: Self) -> Self {
Self(self.0 ^ other.0)
}
/// Returns the intersection from this value with `other`.
#[inline]
#[doc(alias = "and")]
#vis const fn intersection(self, other: Self) -> Self {
self.and(other)
}
/// Returns the union from this value with `other`
#[inline]
#[doc(alias = "or")]
#vis const fn union(self, other: Self) -> Self {
self.or(other)
}
/// Returns the difference from this value with `other`.
#[inline]
#vis const fn difference(self, other: Self) -> Self {
self.and(other.not())
}
/// Returns the symmetric difference from this value with `other`.
#[inline]
#[doc(alias = "xor")]
#vis const fn symmetric_difference(self, other: Self) -> Self {
self.xor(other)
}
/// Returns the complement of the value.
///
/// This is very similar to the [`not`](Self::not), but truncates non used bits
#[inline]
#[doc(alias = "not")]
#vis const fn complement(self) -> Self {
self.not().truncate()
}
/// Set the flags in `other` in the value.
#[inline]
#vis fn set(&mut self, other: Self) {
self.0 = self.and(other).0
}
/// Unset the flags in `other` in the value.
#[inline]
#vis fn unset(&mut self, other: Self) {
self.0 = self.difference(other).0
}
/// Toggle the flags in `other` in the value.
#[inline]
#vis fn toggle(&mut self, other: Self) {
self.0 = self.xor(other).0
}
}
impl core::ops::Not for #ty_name {
type Output = Self;
#[inline]
fn not(self) -> Self::Output {
self.complement()
}
}
impl core::ops::BitAnd for #ty_name {
type Output = Self;
#[inline]
fn bitand(self, rhs: Self) -> Self::Output {
self.and(rhs)
}
}
impl core::ops::BitOr for #ty_name {
type Output = Self;
#[inline]
fn bitor(self, rhs: Self) -> Self::Output {
self.or(rhs)
}
}
impl core::ops::BitXor for #ty_name {
type Output = Self;
#[inline]
fn bitxor(self, rhs: Self) -> Self::Output {
self.xor(rhs)
}
}
impl core::ops::BitAndAssign for #ty_name {
#[inline]
fn bitand_assign(&mut self, rhs: Self) {
core::ops::BitAndAssign::bitand_assign(&mut self.0, rhs.0)
}
}
impl core::ops::BitOrAssign for #ty_name {
#[inline]
fn bitor_assign(&mut self, rhs: Self) {
core::ops::BitOrAssign::bitor_assign(&mut self.0, rhs.0)
}
}
impl core::ops::BitXorAssign for #ty_name {
#[inline]
fn bitxor_assign(&mut self, rhs: Self) {
core::ops::BitXorAssign::bitxor_assign(&mut self.0, rhs.0)
}
}
impl core::ops::Sub for #ty_name {
type Output = Self;
/// The intersection of a source flag with the complement of a target flags value
#[inline]
fn sub(self, rhs: Self) -> Self::Output {
self.difference(rhs)
}
}
impl core::ops::SubAssign for #ty_name {
/// The intersection of a source flag with the complement of a target flags value
#[inline]
fn sub_assign(&mut self, rhs: Self) {
self.unset(rhs)
}
}
impl From<#ty> for #ty_name {
#[inline]
fn from(val: #ty) -> Self {
Self::from_bits_truncate(val)
}
}
impl From<#ty_name> for #ty {
#[inline]
fn from(val: #ty_name) -> Self {
val.0
}
}
impl core::fmt::Binary for #ty_name {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
core::fmt::Binary::fmt(&self.0, f)
}
}
impl core::fmt::LowerHex for #ty_name {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
core::fmt::LowerHex::fmt(&self.0, f)
}
}
impl core::fmt::UpperHex for #ty_name {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
core::fmt::UpperHex::fmt(&self.0, f)
}
}
impl core::fmt::Octal for #ty_name {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
core::fmt::Octal::fmt(&self.0, f)
}
}
impl core::fmt::Debug for #ty_name {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let name = stringify!(#ty_name);
if f.alternate() {
write!(f, "{} ", &name)?;
let mut tmp = f.debug_map();
#(if self.contains(#all_flags) {
tmp.entry(&#all_flags_names, &"set");
} else {
tmp.entry(&#all_flags_names, &"unset");
})*
tmp.finish()
} else {
f.debug_tuple(&name).field(&self.0).finish()
}
}
}
};
Ok(generated.into())
}
static VALID_TYPES: [&str; 21] = [
"i8",
"u8",
"i16",
"u16",
"i32",
"u32",
"i64",
"u64",
"isize",
"usize",
"c_char",
"c_schar",
"c_uchar",
"c_short",
"c_ushort",
"c_int",
"c_uint",
"c_long",
"c_ulong",
"c_longlong",
"c_longlong",
];
fn parse_ty(attr: TokenStream) -> syn::Result<Ident> {
if attr.is_empty() {
Ok(Ident::new("u32", Span::call_site().into()))
} else {
let ident: Ident = syn::parse::<Ident>(attr)?;
if VALID_TYPES.contains(&ident.to_string().as_str()) {
Ok(ident)
} else {
Err(Error::new_spanned(ident, "type must be a integer"))
}
}
}
#[cfg(doc)]
mod example_generated;