bitfields_impl/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
mod generation;
mod parsing;
use std::cmp::Ordering;
use std::fmt;
use proc_macro2::TokenStream;
use quote::{ToTokens, quote};
use syn::spanned::Spanned;
use syn::{Expr, ExprLit, ExprUnary, Fields, Lit, LitInt, Meta, Type, Visibility};
use crate::generation::bit_operations::{generate_get_bit_tokens, generate_set_bit_tokens};
use crate::generation::builder_struct::{generate_builder_tokens, generate_to_builder_tokens};
use crate::generation::common::PANIC_ERROR_MESSAGE;
use crate::generation::debug_impl::generate_debug_implementation;
use crate::generation::default_impl::generate_default_implementation_tokens;
use crate::generation::field_const_getter_setter::{
generate_field_constants_tokens, generate_field_getters_functions_tokens,
generate_field_setters_functions_tokens,
};
use crate::generation::from_into_bits_conversions::{
generate_from_bits_function_tokens, generate_from_bits_with_defaults_function_tokens,
generate_into_bits_function_tokens,
};
use crate::generation::from_types_impl::{
generate_from_bitfield_for_bitfield_type_implementation_tokens,
generate_from_bitfield_type_for_bitfield_implementation_tokens,
};
use crate::generation::new_impl::{
generate_new_function_tokens, generate_new_without_defaults_function_tokens,
};
use crate::generation::set_clear_bits_impl::generate_set_bits_function_tokens;
use crate::generation::set_clear_bits_impl::{
generate_clear_bits_function_tokens, generate_clear_bits_preserve_defaults_function_tokens,
generate_set_bits_with_defaults_function_tokens,
};
use crate::generation::tuple_struct::{
generate_struct_with_fields_tokens, generate_tuple_struct_tokens,
};
use crate::parsing::bitfield_attribute::{BitOrder, BitfieldAttribute};
use crate::parsing::bitfield_field::{BitfieldField, BitsAttribute, FieldAccess, FieldType};
use crate::parsing::number_parser::{NumberParseError, ParsedNumber, parse_number_string};
use crate::parsing::types::{
IntegerType, get_bits_from_type, get_integer_suffix_from_integer_type,
get_integer_type_from_type, get_type_ident, is_custom_field_type, is_size_type,
is_supported_field_type, is_unsigned_integer_type,
};
/// The `#[bit]` attribute name.
pub(crate) const BIT_ATTRIBUTE_NAME: &str = "bits";
/// The ident prefix for padding fields.
pub(crate) const PADDING_FIELD_NAME_PREFIX: &str = "_";
/// Creates a bitfield for the attributed struct.
///
/// ## Example
///
/// ```ignore
/// use bitfields::bitfield;
///
/// /// All fields in the bitfield must sum up to the number of bits of the bitfield type.
/// #[bitfield(u64)]
/// pub struct Bitfield {
/// /// Fields without bits specified default to the size of the field type.
/// /// 8 bits.
/// u8int: u8,
/// /// A field can have specified bits, but the bits must be greater than zero
/// /// and fit in the field type.
/// #[bitfield(4)] // u8 is 8 bits, so 4 bits is valid.
/// small_u8int: u8,
/// /// A field that is signed, will be sign-extended by the most significant
/// /// bit of its type.
/// signed_int: i8,
/// /// If you specify bits, the field will be sign-extended by the most significant
/// /// bit of the specified bits. In this case, the most significant bit of 4 bits.
/// #[bits(4)]
/// small_signed_int: i8,
/// /// A field can be a bool type.
/// bool_field: bool,
/// /// A field can have a default value, which must fit in the field type.
/// #[bits(default = 0x1F)]
/// field_with_default: u8,
/// /// A field can have a default value and specified bits. The default value
/// /// must fit in the specified bits or a compile error will occur.
/// #[bits(4, default = 0xF)] // Default fits in 4 bits.
/// field_with_bits_default: u8,
/// /// By default, all functions share the same visibility as the bitfield struct.
/// /// Fields can have their getters and setters visibility overridden by specifying
/// /// the visibility of the field.
/// pub pub_field: u8, // Getter and setter are public.
/// /// Nested bitfields are supported, but must have their bits specified.
/// #[bits(3)]
/// nested_field: NestedBitfield,
/// /// Custom types are supported, but must have their bits specified and
/// /// implement the `from_bits` and `into_bits` functions.
/// #[bits(3)]
/// custom_type: CustomType,
/// /// Fields can have their access restricted. `ro` means read-only, meaning
/// /// the field can be read but not written.
/// #[bits(5, access = ro)] // Read-only field, no setter.
/// read_only: u8,
/// /// Fields prefixed with "_" are padding fields, which are inaccessible.
/// #[bits(4, default = 0x3)]
/// _padding: u8,
/// /// Fields with the ignore attribute are ignored.
/// #[bits(99, ignore = true)]
/// ignore_me: u128,
/// }
///
/// #[bitfield(u8)]
/// struct NestedBitfield {
/// field: u8
/// }
///
/// /// Custom types must have 2 const functions, `from_bits` and `into_bits` to convert
/// /// the type to and from bits functions.
/// #[derive(Default)]
/// struct CustomType {
/// a: u8,
/// }
///
/// impl CustomType {
/// /// Make sure the parameter type can fit the specified number of bits. Also,
/// /// must be const, we need that extra compile time safety.
/// const fn from_bits(bits: u8) -> Self {
/// Self {
/// a: bits,
/// }
/// }
///
/// /// Make sure the return type can fit the specified number of bits. Also,
/// /// must be const, we need that extra compile time safety.
/// const fn into_bits(self) -> u8 {
/// self.a
/// }
/// }
///
/// // Usage:
/// // Creates a new bitfield using a builder pattern, unset fields default to 0
/// // or their provided default value.
/// let mut bitfield = BitfieldBuilder::new()
/// .with_u8int(5)
/// .with_small_u8int(0xF)
/// .with_custom_type(CustomType::from_bits(0x3))
/// // .with_custom_type(CustomType::default()) // Can pass a [`CustomType`] instance.
/// .with_read_only(0x3) // Read-only field can only be set during construction.
/// // .with__padding(0x3) // Compile error, padding fields are inaccessible.
/// .with_signed_int(-5)
/// .with_small_signed_int(0xF)
/// .build();
///
/// // let bitfield = Bitfield::new(); // Bitfield with default values.
/// // let bitfield = Bitfield::new_without_defaults(); // Bitfield without default values.
/// // let bitfield = BitfieldBuilder::new_without_defaults(); // Builder without defaults.
/// // let builder = bitfield.to_builder(); // Convert a bitfield back to builder.
///
/// // Accessing fields:
/// let u8int = bitfield.u8int(); // Getters
/// let small_u8int = bitfield.small_u8int(); // Signed-types are sign-extended.
/// bitfield.ignore_me; // Ignored fields can be accessed directly.
/// // bitfield.read_only(); // Compile error, read-only fields can't be set.
///
/// // Setting fields:
/// bitfield.set_u8int(0x3); // Setters
/// bitfield.checked_set_small_u8int(0xF); // Checked setter, error if value overflow bits.
///
/// // Converting to bits:
/// let bits = bitfield.into_bits();
///
/// // Converting from bits:
/// let mut bitfield = Bitfield::from_bits(0x3); // Converts from bits
/// // let bitfield = Bitfield::from_bits_with_defaults(0x3); // Converts, respects defaults.
///
/// // Set and clear bitfield:
/// bitfield.set_bits(0x12345678); // Sets the bitfield.
/// bitfield.set_bits_with_defaults(0x12345678); // Sets the bitfield, respects
/// defaults.
///
/// bitfield.clear_bits(); // Clears the bitfield.
/// bitfield.clear_bits_with_defaults(); // Clears the bitfield, respects
/// defaults.
///
/// // Constants:
/// assert_eq!(Bitfield::U8INT_BITS, 8); // Number of bits of the field.
/// assert_eq!(Bitfield::U8INT_OFFSET, 0); // The offset of the field in the
/// bitfield.
/// ```
///
/// ## Features
///
/// ### Bitfield Types
///
/// A bitfield can represent unsigned types (`u8`, `u16`, `u32`, `u64`, `u128`)
/// up to 128-bits, because Rust was weak and stopped at `u128`. The field bits
/// of a bitfield must add up to the number of bits of the bitfield type.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u8)]
/// struct BitFieldU8 {
/// a: u8,
/// }
///
/// #[bitfield(u32)]
/// struct BitFieldU32 {
/// a: u32,
/// }
///
/// #[bitfield(u128)]
/// struct BitFieldU128 {
/// a: u128,
/// }
/// ```
///
/// ### Bitfield Field Types
///
/// A bitfield field can be any unsigned (`u8`, `u16`, `u32`, `u64`, `u128`),
/// signed type (`i8`, `i16`, `i32`, `i64`, `i128`), or a custom type that
/// implements the const functions `from_bits` and `into_bits`. A default value
/// can also be a const variable or a const function. Just be aware that const
/// function and variables defaults lose their compile-time field bits checking.
///
/// Signed types are treated as 2's complement data types, meaning the most
/// significant represents the sign bit. For example, if you had a field with 5
/// bits, the value range would be `-16` to `15`. The more bits you include, the
/// larger the value range.
/// ```ignore
/// use bitfields::bitfield;
///
/// const CONST_VAR: u8 = 0x2;
///
/// const fn provide_val() -> u8 {
/// 0x1
/// }
///
/// #[bitfield(u32)]
/// struct Bitfield {
/// #[bits(default = 0xFF)]
/// a: u8,
/// #[bits(default = -127)]
/// b: i8,
/// /// Sign-extended by the most significant bit of 4 bits. Also treated as
/// 2's /// complement, meaning this field with 4 bits has the value range
/// of /// `-8` to `7`. You can add more bits to increase this range!
/// #[bits(4, default = 9)]
/// c_sign_extended: i8,
/// #[bits(2, default = CONST_VAR)] // No compile time checks for const
/// variables. const_var_default: u8,
/// #[bits(2, default = provide_val())] // No compile time checks for const
/// functions. const_fn_default: u8, // No compile time checks for const
/// functions. #[bits(8, default = CustomType::C)]
/// custom_type: CustomType
/// }
///
/// #[derive(Debug, PartialEq)]
/// enum CustomType {
/// A = 0,
/// B = 1,
/// C = 2,
/// }
///
/// impl CustomType {
/// const fn from_bits(bits: u8) -> Self {
/// match bits {
/// 0 => Self::A,
/// 1 => Self::B,
/// 2 => Self::C,
/// _ => unreachable!(),
/// }
/// }
///
/// const fn into_bits(self) -> u8 {
/// self as u8
/// }
/// }
///
/// let bitfield = Bitfield::new();
/// assert_eq!(bitfield.a(), 0xFF);
/// assert_eq!(bitfield.b(), -127);
/// assert_eq!(bitfield.c_sign_extended(), -7);
/// assert_eq!(bitfield.const_var_default(), 0x2);
/// assert_eq!(bitfield.const_fn_default(), 0x1);
/// assert_eq!(bitfield.custom_type(), CustomType::C);
/// ```
///
/// ### Constructing a Bitfield
///
/// A bitfield can be constructed using the `new` and `new_without_defaults`
/// constructors. The former initializes the bitfield with default values, while
/// the latter initializes the bitfield without default values, except for
/// padding fields which always keep their default value or 0.
///
/// A bitfield can also be constructed using a fluent builder pattern using the
/// `<Bitfield>Builder::new` and `<Bitfield>Builder::new_without_defaults`
/// constructors. They operate the same as the `new` and `new_without_defaults`
/// constructors.
///
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u32)]
/// struct Bitfield {
/// #[bits(default = 0x12)]
/// a: u8,
/// #[bits(default = 0x34)]
/// b: u8,
/// #[bits(default = 0x56)]
/// c: u8,
/// #[bits(default = 0x78)]
/// _d: u8,
/// }
///
/// let bitfield = Bitfield::new();
/// assert_eq!(bitfield.a(), 0x12);
/// assert_eq!(bitfield.b(), 0x34);
/// assert_eq!(bitfield.c(), 0x56);
/// assert_eq!(bitfield.into_bits(), 0x78563412);
///
/// let bitfield_without_defaults = Bitfield::new_without_defaults();
/// assert_eq!(bitfield_without_defaults.a(), 0);
/// assert_eq!(bitfield_without_defaults.b(), 0);
/// assert_eq!(bitfield_without_defaults.c(), 0);
/// assert_eq!(bitfield_without_defaults.into_bits(), 0x78000000);
///
/// let bitfield = BitfieldBuilder::new()
/// .with_a(0x12)
/// .with_b(0x34)
/// .with_c(0x56)
/// .build();
/// assert_eq!(bitfield.a(), 0x12);
/// assert_eq!(bitfield.b(), 0x34);
/// assert_eq!(bitfield.c(), 0x56);
/// assert_eq!(bitfield.into_bits(), 0x78563412);
/// ```
///
/// ### To Builder
///
/// A constructed bitfield can be converted back to a builder using the
/// `to_builder` function which is enabled using the `#[bitfield(to_builder =
/// true)]` attribute arg. The bitfield must also derive `Clone` to support this
/// feature.
///
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u32, to_builder = true)]
/// #[derive(Clone)]
/// struct Bitfield {
/// #[bits(default = 0x12)]
/// a: u8,
/// #[bits(default = 0x34)]
/// b: u8,
/// #[bits(default = 0x56)]
/// c: u8,
/// #[bits(default = 0x78)]
/// _d: u8,
/// }
///
/// let bitfield = Bitfield::new();
///
/// let bitfield_builder = bitfield.to_builder();
/// ```
///
/// ### Setting and Clearing a Bitfield
///
/// You are able to set and clear a bitfield using the `set_bits` and
/// `clear_bits` functions.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u32)]
/// struct Bitfield {
/// #[bits(default = 0x12)]
/// a: u8,
/// #[bits(default = 0x34)]
/// b: u8,
/// c: u8,
/// #[bits(default = 0x78)]
/// _d: u8, // Padding fields are respected.
/// }
///
/// let mut bitfield = Bitfield::new();
/// bitfield.set_bits(0x11223344);
/// assert_eq!(bitfield.into_bits(), 0x78223344);
///
/// let mut bitfield = Bitfield::new();
/// bitfield.set_bits_with_defaults(0x11223344);
/// assert_eq!(bitfield.into_bits(), 0x78223412);
///
/// let mut bitfield = Bitfield::new();
/// bitfield.clear_bits();
/// assert_eq!(bitfield.into_bits(), 0x78000000);
///
/// let mut bitfield = Bitfield::new();
/// bitfield.clear_bits_with_defaults();
/// assert_eq!(bitfield.into_bits(), 0x78003412);
/// ```
///
/// ### Bitfield Conversions
///
/// A bitfield can be converted from bits using the `from_bits` or
/// `from_bits_with_defaults` functions. The former ignores default values,
/// while the latter respects them. Padding fields are always 0 or their default
/// value. The bitfield can also be converted to bits using the `into_bits`
/// function. The `From` trait is also implemented between the bitfield and the
/// bitfield type and operates the same as `from_bits`.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u32)]
/// #[derive(Copy, Clone)]
/// struct Bitfield {
/// #[bits(default = 0x12)]
/// a: u8,
/// #[bits(8)]
/// b: CustomType,
/// c: u8,
/// #[bits(default = 0x78)]
/// _d: u8,
/// }
///
/// #[derive(Debug, PartialEq)]
/// enum CustomType {
/// A = 0,
/// B = 1,
/// C = 2,
/// }
///
/// impl CustomType {
/// const fn from_bits(bits: u8) -> Self {
/// match bits {
/// 1 => Self::A,
/// 2 => Self::B,
/// 3 => Self::C,
/// _ => Self::A,
/// }
/// }
///
/// const fn into_bits(self) -> u8 {
/// self as u8
/// }
/// }
///
/// let bitfield = Bitfield::from_bits(0x11223344);
/// assert_eq!(bitfield.a(), 0x44);
/// assert_eq!(bitfield.b(), CustomType::A);
/// assert_eq!(bitfield.c(), 0x22);
/// let val = bitfield.into_bits();
/// assert_eq!(val, 0x78220044);
///
/// let bitfield_respect_defaults =
/// Bitfield::from_bits_with_defaults(0x11223344);
/// assert_eq!(bitfield_respect_defaults.a(), 0x12); // Default value respected
/// assert_eq!(bitfield_respect_defaults.b(), CustomType::A);
/// assert_eq!(bitfield_respect_defaults.c(), 0x22);
/// let val = bitfield_respect_defaults.into_bits();
/// assert_eq!(val, 0x78220012);
///
/// // From trait
/// let val: u32 = bitfield.into();
/// assert_eq!(val, 0x78220044);
/// let bitfield: Bitfield = val.into();
/// assert_eq!(bitfield.into_bits(), 0x78220044);
/// ```
///
/// ### Conversion Endianess
///
/// Sometimes the outside world is outside our control, like how systems store
/// or expect data endian. Luckily, the endian of the bitfield conversions can
/// be controlled by specifying the `#[bitfield(from_endian = x, into_endian =
/// x)]` args. The possible endians are `little` or `big`. By default, the
/// endian of both is `big`.
/// ````ignore
/// use bitfields::bitfield;
///
/// // We are working with a system that stores data in little-endian, we
/// // set the from_endian to little for the proper representation.
/// //
/// // The system expects the data it stores in big-endian, we set the
/// // into_endian to big-endian for converting into the proper representation.
/// #[bitfield(u32, from_endian = little, into_endian = big)]
/// pub struct Bitfield {
/// a: u8,
/// b: u8,
/// c: u8,
/// d: u8,
/// }
///
/// // The host device stored the data 0x12345678 in little-endian memory
/// // as [0x78, 0x56, 0x34, 0x12].
/// let bitfield = Bitfield::from_bits(0x78563412);
///
/// assert_eq!(bitfield.a(), 0x78);
/// assert_eq!(bitfield.b(), 0x56);
/// assert_eq!(bitfield.c(), 0x34);
/// assert_eq!(bitfield.d(), 0x12);
/// assert_eq!(bitfield.into_bits(), 0x12345678);
/// ````
///
/// ### Field Order
///
/// By default, fields are ordered from the least significant bit (lsb) to the
/// most significant bit (msb). The order can be changed by specifying the
/// `#[bitfield(order = x)]` arg on the bitfield struct. There are two field
/// orderings, `lsb` and `msb`.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u32, order = msb)]
/// struct Bitfield {
/// #[bits(default = 0x12)]
/// a: u8,
/// #[bits(default = 0x34)]
/// b: u8,
/// #[bits(default = 0x56)]
/// c: u8,
/// #[bits(default = 0x78)]
/// d: u8,
/// }
///
/// let bitfield = Bitfield::new();
/// assert_eq!(bitfield.a(), 0x12);
/// assert_eq!(bitfield.b(), 0x34);
/// assert_eq!(bitfield.c(), 0x56);
/// assert_eq!(bitfield.d(), 0x78);
/// let val = bitfield.into_bits();
///
/// // .- a
/// // | .- b
/// // | | .- c
/// // | | | .- d
/// assert_eq!(val, 0x12_34_56_78);
/// assert_eq!(Bitfield::A_OFFSET, 24); // Offset of the a field in the
/// bitfield. ```
///
/// ### Field Access
///
/// Field access can be controlled by specifying the `#[bits(access = x)]` arg
/// on a field. There are four accesses:
/// - `rw` - Read and write access (default)
/// - `ro` - Read-only access, only set during construction or from bits.
/// - `wo` - Write-only access.
/// - `none` - No access.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u32)]
/// struct Bitfield {
/// read_write: u8,
/// #[bits(access = ro)]
/// read_only: u8,
/// #[bits(access = wo)]
/// write_only: u8,
/// #[bits(default = 0xFF, access = none)]
/// none: u8,
/// }
///
/// let mut bitfield = BitfieldBuilder::new()
/// .with_read_write(0x12)
/// .with_read_only(0x34) // Read-only fields only set during construction
/// or from bits. .with_write_only(0x56)
/// // .with_none(0x78) // Compile error, none field can't be set.
/// .build();
/// bitfield.set_read_write(0x12);
/// // bitfield.set_read_only(1); // Compile error, read-only field can't be
/// set, after construction. set. bitfield.set_write_only(0x56);
/// // bitfield.set_none(0x78); // Compile error, none field can't be set.
///
/// assert_eq!(bitfield.read_write(), 0x12);
/// assert_eq!(bitfield.read_only(), 0x34);
/// // assert_eq!(bitfield.write_only(), 0x56); // Compile error, write-only
/// can't be read. // assert_eq!(bitfield.none(), 0xFF); // Compile error, none
/// field can't be accessed. assert_eq!(bitfield.into_bits(), 0xFF563412); //
/// All fields exposed when converted to bits. ```
///
/// ### Checked Setters
///
/// Normally, when a field is set, the value is truncated to the number of bits
/// of the field. Fields also have checked setters that returns an error if the
/// value overflows the number of bits of the field.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u16)]
/// struct Bitfield {
/// a: u8,
/// #[bits(4)]
/// b: u8,
/// #[bits(4)]
/// _padding: u8,
/// }
///
/// let mut bitfield = Bitfield::new();
/// bitfield.set_a(0xFF);
/// bitfield.set_b(0x12); // Truncated to 4 bits.
/// assert_eq!(bitfield.a(), 0xFF);
/// assert_eq!(bitfield.b(), 0x2);
///
/// let res = bitfield.checked_set_b(0x12); // Error, value overflows bits.
/// assert!(res.is_err());
/// ```
///
/// ### Bit Operations
///
/// Individual bits can be get or set using the `get_bit` and `set_bit`
/// functions. They can be enabled using the bitfield attribute arg For
/// `get_bit`, if the bit is out-of-bounds or the field doesn't have write
/// access, `false` is returned. There is a checked version `checked_get_bit`
/// that return an error instead. Similarly, for `set_bit`, if the bit is
/// out-of-bounds or the field doesn't have write access, the operation is
/// no-op. There is a checked version `checked_set_bit` that returns an error
/// instead.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u8, bit_ops = true)]
/// #[derive(Copy, Clone)]
/// pub struct Bitfield {
/// #[bits(2, default = 0b11)]
/// a: u8,
/// #[bits(2, default = 0b00)]
/// b: u8,
/// #[bits(2, default = 0b10, access = wo)]
/// c: u8,
/// #[bits(2, default = 0b01)]
/// _d: u8,
/// }
///
/// let bitfield = Bitfield::new();
///
/// assert!(bitfield.get_bit(0));
/// assert!(bitfield.get_bit(1));
/// assert!(!bitfield.get_bit(2));
/// assert!(!bitfield.get_bit(3));
/// assert!(bitfield.get_bit(4)); // No write access, false is returned.
/// assert!(bitfield.get_bit(5)); // No write access, false is returned.
/// assert!(bitfield.checked_get_bit(4).is_err()); // No write access, err.
/// assert!(bitfield.checked_get_bit(5).is_err()); // No write access, err.
/// assert!(bitfield.get_bit(6));
/// assert!(!bitfield.get_bit(7));
/// assert!(bitfield.get_bit(50)); // Out-of-bounds, false is returned.
/// assert!(bitfield.checked_get_bit(50).is_err()); // Out-of-bounds, err.
/// ```
/// ```ignore
/// #[bitfield(u8, bit_ops = true)]
/// #[derive(Copy, Clone)]
/// pub struct Bitfield {
/// #[bits(2)]
/// a: u8,
/// #[bits(2, default = 0b11)]
/// b: u8,
/// #[bits(2, default = 0b11, access = ro)]
/// c: u8,
/// #[bits(2, default = 0b00)]
/// _d: u8,
/// }
///
/// let mut bitfield = Bitfield::new();
///
/// bitfield.set_bit(0, true);
/// bitfield.set_bit(1, true);
/// bitfield.set_bit(2, false);
/// bitfield.set_bit(3, false);
/// bitfield.set_bit(4, false); // No-op, no write access.
/// bitfield.set_bit(5, false); // No-op, no write access.
/// assert!(bitfield.checked_set_bit(4, false).is_err()); // Error, no write
/// access. assert!(bitfield.checked_set_bit(5, false).is_err()); // Error, no
/// write access. bitfield.set_bit(6, true); // No-op, padding.
/// bitfield.set_bit(7, true); // No-op, padding.
/// assert!(bitfield.checked_set_bit(4, false).is_err()); // Error, padding.
/// assert!(bitfield.checked_set_bit(5, false).is_err()); // Error, padding..
/// assert_eq!(bitfield.into_bits(), 0b110011);
/// ```
///
/// ### Padding Fields
///
/// Fields prefixed with an underscore `_` are padding fields, which are
/// inaccessible. Meaning the field is always 0/false or a default value. They
/// are useful for padding the bits of the bitfield.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u16)]
/// struct Bitfield {
/// a: u8,
/// #[bits(default = 0xFF)]
/// _padding: u8, // Fills the remaining bits of the u16.
/// }
///
/// let bitfield = Bitfield::new();
/// assert_eq!(bitfield.a(), 0);
/// // assert_eq!(bitfield._padding(), 0xFF00); // Compile error, padding
/// inaccessible. // bitfield.set__padding(0xFF); // Compile error, padding
/// fields are inaccessible. assert_eq!(bitfield.into_bits(), 0xFF00); // All
/// fields exposed when converted to bits. ```
///
/// ### Ignored Fields
///
/// Fields with the `#[bits(ignore = true)` attribute are ignored and not
/// included in the bitfield. This is useful for when you are building a custom
/// bitfield, but want to include certain fields that aren't a part of the
/// bitfield without wrapping having to wrap bitfield is a parent struct. All
/// ignored fields must implement the `Default` trait. Ignored fields
/// are accessible directly like normal struct fields.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u16)]
/// struct Bitfield {
/// a: u8,
/// b: u8,
/// #[bits(ignore = true)] // Ignored field.
/// field_id: u8,
/// #[bits(ignore = true)] // Ignored field.
/// field_custom: CustomType,
/// }
///
/// #[derive(Debug, Default, PartialEq)]
/// enum CustomType {
/// #[default]
/// A,
/// B,
/// }
///
/// let bitfield = Bitfield::new();
///
/// assert_eq!(bitfield.field_id, 0); // Ignored fields can be accessed
/// directly. assert_eq!(bitfield.field_custom, CustomType::A); // Ignored
/// fields can be accessed directly. ```
///
/// ### Field Constants
///
/// Fields with read or write access have constants generated for their number
/// of bits and offset in the bitfield.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u32)]
/// struct Bitfield {
/// #[bits(default = 0x12)]
/// a: u8,
/// #[bits(default = 0x34)]
/// b: u8,
/// #[bits(default = 0x56)]
/// c: u8,
/// #[bits(default = 0x78)]
/// d: u8,
/// }
///
/// assert_eq!(Bitfield::A_BITS, 8); // Number of bits of the afield.
/// assert_eq!(Bitfield::A_OFFSET, 0); // The offset of the a field in the
/// bitfield. assert_eq!(Bitfield::B_BITS, 8); // Number of bits of the b field.
/// assert_eq!(Bitfield::B_OFFSET, 8); // The offset of the b field in the
/// bitfield. assert_eq!(Bitfield::C_BITS, 8); // Number of bits of c the field.
/// assert_eq!(Bitfield::C_OFFSET, 16); // The offset of the c field in the
/// bitfield. assert_eq!(Bitfield::D_BITS, 8); // Number of bits of the d field.
/// assert_eq!(Bitfield::D_OFFSET, 24); // The offset of the d field in the
/// bitfield. ```
///
/// ### Debug Implementation
///
/// A debug implementation is generated for the bitfield, which prints the
/// fields and their values.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u32)]
/// struct Bitfield {
/// #[bits(default = 0x12)]
/// a: u8,
/// #[bits(default = 0x34)]
/// b: u8,
/// #[bits(default = 0x56)]
/// c: u8,
/// #[bits(default = 0x78)]
/// d: u8,
/// }
///
/// let bitfield = Bitfield::new();
///
/// assert_eq!(format!("{:?}", bitfield), "Bitfield { d: 120, c: 86, b: 52, a:
/// 18 }"); ```
///
/// ### Passing Attributes
///
/// Attributes below the `#[bitfield]` attribute are passed to the generated
/// struct.
/// ```ignore
/// use bitfields::bitfield;
///
/// #[bitfield(u32)]
/// #[derive(Copy, Clone)]
/// struct Bitfield {
/// a: u32,
/// }
/// ```
///
/// ### Complete Generation Control
///
/// You have complete control over what gets generated by the bitfield macro.
/// When your deploying to a resource-constrained environment, you can generate
/// only the necessary functions or implementations. You can disable generation
/// by passing `false` to its attribute arg.
///
/// The `#[bitfield]` args that control generation are:
///
/// - `#[bitfield(new = true)]` - Generates the `new` and `new_without_defaults`
/// constructor.
/// - `#[bitfield(from_bits = true)]` - Generates the `from_bits` and
/// `from_bits_with_defaults` functions.
/// - `#[bitfield(into_bits = true)]` - Generates the `into_bits` function.
/// - `#[bitfield(from = true)]` - Generates the `From` trait implementation.
/// - `#[bitfield(debug = true)]` - Generates the `Debug` trait implementation.
/// - `#[bitfield(default = true)]` - Generates the `Default` trait
/// implementation
/// - `#[bitfield(builder = true)]` - Generates the builder implementation.
/// - `#[bitfield(set_bits = true)]` - Generates the `set_bits` function.
/// - `#[bitfield(clear_bits = true)]` - Generates the `clear_bits` function.
/// - `#[bitfield(bit_ops = true)]` - Generates the bit operations
/// implementation.
/// - `#[bitfield(to_builder = true)]` - Generates the `to_builder` function.
#[proc_macro_attribute]
pub fn bitfield(
args: proc_macro::TokenStream,
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
match parse_bitfield(args.into(), input.into()) {
Ok(res) => res.into(),
Err(err) => err.into_compile_error().into(),
}
}
/// Parses the bitfield attribute, struct, and fields.
fn parse_bitfield(args: TokenStream, input: TokenStream) -> syn::Result<TokenStream> {
// Parse the struct tokens
let struct_tokens = syn::parse2::<syn::ItemStruct>(input.clone())?;
// Parse the arguments of the '#[bitfield(arg, arg)]' attribute
let bitfield_attribute: BitfieldAttribute = match syn::parse2(args) {
Ok(bitfield_attribute) => bitfield_attribute,
Err(err) => {
return Err(create_syn_error(input.span(), err.to_string()));
}
};
// Check if the bitfield type can contain the fields.
let all_fields = parse_fields(&bitfield_attribute, &struct_tokens)?;
let fields = all_fields.0;
let ignored_fields = all_fields.1;
check_bitfield_type_contain_field_bits(&bitfield_attribute, &fields)?;
check_bitfield_names_unique(&fields)?;
// Generate the bitfield functions.
generate_functions(&bitfield_attribute, &fields, &ignored_fields, &struct_tokens)
}
/// Check if the bitfield type can contain the field bits.
fn check_bitfield_type_contain_field_bits(
bitfield_attribute: &BitfieldAttribute,
fields: &[BitfieldField],
) -> syn::Result<()> {
let total_field_bits = fields.iter().map(|field| field.bits).sum::<u8>();
match total_field_bits.cmp(&bitfield_attribute.bits) {
Ordering::Greater => Err(create_syn_error(
bitfield_attribute.ty.span(),
format!(
"The total number of bits of the fields ({} bits) is greater than the number of bits of the bitfield type '{}' ({} bits).",
total_field_bits,
get_type_ident(&bitfield_attribute.ty).unwrap(),
bitfield_attribute.bits
),
)),
Ordering::Less => {
let remaining_bits = bitfield_attribute.bits - total_field_bits;
Err(create_syn_error(
bitfield_attribute.ty.span(),
format!(
"The total number of bits of the fields ({} bits) is less than the number of bits of the bitfield type '{}' ({} bits), you can add a padding field (prefixed with '_') to fill the remaining '{} bits'.",
total_field_bits,
get_type_ident(&bitfield_attribute.ty).unwrap(),
bitfield_attribute.bits,
remaining_bits,
),
))
}
Ordering::Equal => {
// The total number of bits of all fields is equal to the number of bits, we're
// good.
Ok(())
}
}
}
fn check_bitfield_names_unique(fields: &[BitfieldField]) -> syn::Result<()> {
let mut field_names = Vec::new();
for field in fields {
if field_names.contains(&field.name) {
return Err(create_syn_error(
field.name.span(),
format!(
"The field name '{}' is duplicated, each field must have a unique name.",
field.name
),
));
}
if !field.padding {
field_names.push(field.name.clone());
}
}
Ok(())
}
/// Parses all the fields into a list of [`BitfieldField`]s.
fn parse_fields(
bitfield_attribute: &BitfieldAttribute,
struct_tokens: &syn::ItemStruct,
) -> syn::Result<(Vec<BitfieldField>, Vec<BitfieldField>)> {
let fields_tokens = match &struct_tokens.fields {
Fields::Named(named_files) => named_files,
_ => {
return Err(create_syn_error(
struct_tokens.span(),
"Non-named fields are not supported.",
));
}
};
let mut fields = Vec::new();
let mut ignored_fields = Vec::new();
for field_token in fields_tokens.named.clone() {
let field = do_parse_field(bitfield_attribute, field_token, &fields)?;
if field.ignore {
ignored_fields.push(field);
} else {
fields.push(field);
}
}
Ok((fields, ignored_fields))
}
/// Internal implementation of [`parse_fields`] to parse a single field.
fn do_parse_field(
bitfield_attribute: &BitfieldAttribute,
field_tokens: syn::Field,
prev_fields: &[BitfieldField],
) -> syn::Result<BitfieldField> {
// Parse field attribute, a field could have multiple attributes, but we only
// care about our 'bits' attribute.
let field_bit_attribute = field_tokens.attrs.iter().find(|attr| {
attr.path().is_ident(BIT_ATTRIBUTE_NAME) && attr.style == syn::AttrStyle::Outer
});
let visibility = match field_tokens.vis {
// Pass the visibility to the field.
Visibility::Public(_) | Visibility::Restricted(_) => Some(field_tokens.vis.clone()),
// Use the visibility of the struct
Visibility::Inherited => None,
};
let field_type = if is_custom_field_type(&field_tokens.ty) {
FieldType::CustomFieldType
} else {
FieldType::IntegerFieldType
};
let padding =
field_tokens.ident.clone().unwrap().to_string().starts_with(PADDING_FIELD_NAME_PREFIX);
let bitfield = if field_bit_attribute.is_none() {
if !is_supported_field_type(&field_tokens.ty) {
return Err(create_syn_error(
field_tokens.span(),
format!(
"The field type {:?} is not supported.",
get_type_ident(&field_tokens.ty).unwrap()
),
));
}
// We have to determine the number of bits from the field type since there's no
// '#[bits]' attribute.
if is_size_type(&field_tokens.ty) {
return Err(create_syn_error(
field_tokens.span(),
"The types isize and usize require a bit size, otherwise we can't determine the size of the field.",
));
}
if field_type != FieldType::IntegerFieldType {
return Err(create_syn_error(
field_tokens.span(),
"Custom and nested field types require a defined bit size, otherwise we can't determine the size of the field.",
));
}
let bits = get_bits_from_type(&field_tokens.ty)?;
let offset = calculate_field_offset(bits, bitfield_attribute, prev_fields)?;
let access = if padding { FieldAccess::None } else { FieldAccess::ReadWrite };
// Create a bitfield field with default values since we don't have one to
// parse.
BitfieldField {
name: field_tokens.ident.unwrap(),
ty: field_tokens.ty.clone(),
vis: visibility,
bits,
offset,
default_value_tokens: None,
unsigned: true,
padding,
access,
field_type: FieldType::IntegerFieldType,
ignore: false,
}
} else {
let bit_attribute_tokens = match &field_bit_attribute.unwrap().meta {
Meta::List(list) => list,
_ => {
return Err(create_syn_error(
field_tokens.span(),
"The '#[bits]' attribute must be a list.",
));
}
};
let bits_attribute: BitsAttribute = syn::parse2(bit_attribute_tokens.tokens.clone())?;
if bits_attribute.ignore {
return Ok(BitfieldField {
ty: field_tokens.ty.clone(),
vis: Some(field_tokens.vis),
bits: 0,
offset: 0,
default_value_tokens: None,
unsigned: false,
padding,
access: FieldAccess::ReadOnly,
name: field_tokens.ident.unwrap(),
ignore: true,
field_type,
});
}
if !is_supported_field_type(&field_tokens.ty) {
return Err(create_syn_error(
field_tokens.span(),
format!(
"The field type {:?} is not supported.",
get_type_ident(&field_tokens.ty).unwrap()
),
));
}
let bits = match bits_attribute.bits {
Some(bits) => {
// Make sure the type of the field can contain the specified number of bits if
// not a custom type.
if field_type == FieldType::IntegerFieldType
&& bits > get_bits_from_type(&field_tokens.ty)?
{
return Err(create_syn_error(
bit_attribute_tokens.span(),
format!(
"The field type {:?} ({} bits) is too small to hold the specified '{} bits'.",
get_type_ident(&field_tokens.ty).unwrap(),
get_bits_from_type(&field_tokens.ty)?,
bits
),
));
}
bits
}
None => {
if field_type != FieldType::IntegerFieldType {
return Err(create_syn_error(
field_tokens.span(),
"Custom and nested field types require a defined bit size, otherwise we can't determine the size of the field.",
));
}
get_bits_from_type(&field_tokens.ty)?
}
};
// Make sure the field bits are greater than 0.
if bits == 0 {
return Err(create_syn_error(
bit_attribute_tokens.span(),
"The field bits must be greater than 0.",
));
}
// Make sure the default value is within the field bits. If a number was unable
// to be parsed, let's take a chance and see if the user is trying to
// use a const variable or a const function.
let parsed_number = if field_type == FieldType::IntegerFieldType
&& bits_attribute.clone().default_value_expr.is_some()
{
check_default_value_fit_in_field(
&bits_attribute.clone().default_value_expr.unwrap(),
bits,
field_tokens.ty.clone(),
)?
} else {
None
};
let unsigned =
field_type != FieldType::IntegerFieldType || is_unsigned_integer_type(&field_tokens.ty);
let access = if padding {
if bits_attribute.access.is_some() {
return Err(create_syn_error(
bit_attribute_tokens.span(),
"Padding fields can't have a specified access.",
));
}
FieldAccess::None
} else {
bits_attribute.access.unwrap_or(FieldAccess::ReadWrite)
};
let offset = calculate_field_offset(bits, bitfield_attribute, prev_fields)?;
let default_value_tokens = match bits_attribute.default_value_expr {
None => None,
Some(ref expr) => {
// We want to add integer literals to default values expressions if the
// expression is a negative number without a suffix. We do alot of casting
// so what happens is, if there is the default value expr `-125`, when we
// try to cast later like `-125 as u8`, Rust will complain that the number
// is too large for the type. Adding the integer suffix will fix this since
// Rust will know the type of the number and will cast it.
if unsigned
|| field_type != FieldType::IntegerFieldType
|| parsed_number.is_none()
|| parsed_number.unwrap().has_integer_suffix
{
Some(quote! {
#expr
})
} else {
let tokens =
add_integer_literals_to_expr(&expr.clone(), field_tokens.ty.clone())?;
Some(quote! {
#tokens
})
}
}
};
BitfieldField {
name: field_tokens.ident.unwrap(),
ty: field_tokens.ty.clone(),
vis: visibility,
bits,
offset,
default_value_tokens,
unsigned,
padding,
access,
field_type,
ignore: false,
}
};
Ok(bitfield)
}
/// Checks if the default value can fit in the field bits.
fn check_default_value_fit_in_field(
default_value_expr: &Expr,
bits: u8,
field_type: Type,
) -> syn::Result<Option<ParsedNumber>> {
let default_value_str = "e!(#default_value_expr).to_string();
let parsed_number = match parse_number_string(default_value_str) {
Ok(number) => number,
Err(err) => {
return match err {
NumberParseError::FloatNotSupported => Err(create_syn_error(
default_value_expr.span(),
"Floats are not supported as default values.".to_string(),
)),
// Maybe the user is trying to use a const variable or a const
// function call as a default.
NumberParseError::InvalidNumberString => Ok(None),
};
}
};
let bits_max_value = 1 << bits as u128;
if parsed_number.number >= bits_max_value {
if parsed_number.negative {
return Err(create_syn_error(
default_value_expr.span(),
format!(
"The default value -'{}' is too large to fit into the specified '{} bits'.",
parsed_number.number, bits,
),
));
}
return Err(create_syn_error(
default_value_expr.span(),
format!(
"The default value '{}' is too large to fit into the specified '{} bits'.",
parsed_number.number, bits,
),
));
}
let default_value_too_big_for_type = match get_integer_type_from_type(&field_type) {
IntegerType::Bool => parsed_number.number > 1,
IntegerType::U8 => parsed_number.number > u8::MAX as u128,
IntegerType::U16 => parsed_number.number > u16::MAX as u128,
IntegerType::U32 => parsed_number.number > u32::MAX as u128,
IntegerType::U64 => parsed_number.number > u64::MAX as u128,
IntegerType::U128 => {
// Unable to happen, this is Rust's max unsigned type value.
false
}
IntegerType::Usize => parsed_number.number > usize::MAX as u128,
IntegerType::Isize => {
if parsed_number.negative {
parsed_number.number > isize::MIN.unsigned_abs() as u128
} else {
parsed_number.number > isize::MAX as u128
}
}
IntegerType::I8 => {
if parsed_number.negative {
parsed_number.number > i8::MIN.unsigned_abs() as u128
} else {
parsed_number.number > i8::MAX as u128
}
}
IntegerType::I16 => {
if parsed_number.negative {
parsed_number.number > i16::MIN.unsigned_abs() as u128
} else {
parsed_number.number > i16::MAX as u128
}
}
IntegerType::I32 => {
if parsed_number.negative {
parsed_number.number > i32::MIN.unsigned_abs() as u128
} else {
parsed_number.number > i32::MAX as u128
}
}
IntegerType::I64 => {
if parsed_number.negative {
parsed_number.number > i64::MIN.unsigned_abs() as u128
} else {
parsed_number.number > i64::MAX as u128
}
}
IntegerType::I128 => {
if parsed_number.negative {
parsed_number.number > i128::MIN.unsigned_abs()
} else {
parsed_number.number > i128::MAX as u128
}
}
_ => Err(create_syn_error(default_value_expr.span(), PANIC_ERROR_MESSAGE))?,
};
if default_value_too_big_for_type {
let negative_str = if parsed_number.negative { "-" } else { "" };
return Err(create_syn_error(
default_value_expr.span(),
format!(
"The default value '{}{}' is too large to fit into the field type '{}'.",
negative_str,
parsed_number.number,
get_type_ident(&field_type).unwrap()
),
));
}
Ok(Some(parsed_number))
}
/// Calculate the offset of a field based on previous fields.
fn calculate_field_offset(
bits: u8,
bitfield_attribute: &BitfieldAttribute,
prev_fields: &[BitfieldField],
) -> syn::Result<u8> {
let offset = prev_fields.iter().map(|field| field.bits).sum::<u8>();
match bitfield_attribute.bit_order {
BitOrder::Lsb => Ok(offset),
BitOrder::Msb => {
let bitfield_type_bits = get_bits_from_type(&bitfield_attribute.ty)?;
// We calculate offset starting from the left. There's a chance that
// the total bits of all fields is greater than the number of bits
// of the bitfield type. We will catch it later so
// we can ignore for now.
if offset + bits < bitfield_type_bits {
Ok(bitfield_type_bits - bits - offset)
} else {
// We've underflow the bitfield type, this will be caught later.
Ok(0)
}
}
}
}
/// Adds the field type integer literal suffix to the expression.
///
/// For example, if the expression is '-1' and the field type is 'i8', the
/// expression will be updated to '1i8'.
fn add_integer_literals_to_expr(expr: &Expr, field_type: Type) -> syn::Result<TokenStream> {
let updated_expr = if let Expr::Unary(unary) = expr {
let attrs = unary.attrs.clone();
let op = unary.op;
let updated_expr = if let Expr::Lit(expr_lit) = *unary.expr.clone() {
let new_lit = create_expr_lit_with_integer_suffix(&expr_lit, field_type)?;
Expr::Lit(ExprLit { attrs: expr_lit.attrs, lit: new_lit.lit })
} else {
Err(create_syn_error(expr.span(), PANIC_ERROR_MESSAGE))?
};
Expr::Unary(ExprUnary { attrs, op, expr: Box::new(updated_expr) })
} else if let Expr::Lit(expr_lit) = expr {
let new_lit = create_expr_lit_with_integer_suffix(expr_lit, field_type)?;
Expr::Lit(ExprLit { attrs: expr_lit.clone().attrs, lit: new_lit.lit })
} else {
Err(create_syn_error(expr.span(), PANIC_ERROR_MESSAGE))?
};
Ok(quote! {
#updated_expr
})
}
/// Helper for creating an integer literal with the integer suffix.
fn create_expr_lit_with_integer_suffix(lit: &ExprLit, field_type: Type) -> syn::Result<ExprLit> {
let integer_type = get_integer_type_from_type(&field_type);
let integer_suffix = get_integer_suffix_from_integer_type(integer_type)?;
let new_lit = match lit.lit.clone() {
Lit::Int(lit_int) => {
let new_lit_int =
LitInt::new(&format!("{}{}", lit_int.token(), integer_suffix), lit_int.span());
ExprLit { attrs: lit.attrs.clone(), lit: Lit::Int(new_lit_int) }
}
_ => Err(create_syn_error(lit.span(), PANIC_ERROR_MESSAGE))?,
};
Ok(new_lit)
}
/// Generate the bitfield functions.
fn generate_functions(
bitfield_attribute: &BitfieldAttribute,
fields: &[BitfieldField],
ignored_fields: &[BitfieldField],
struct_tokens: &syn::ItemStruct,
) -> syn::Result<TokenStream> {
let struct_attributes: TokenStream =
struct_tokens.attrs.iter().map(ToTokens::to_token_stream).collect();
let struct_name = &struct_tokens.ident;
let bitfield_struct = if !ignored_fields.is_empty() {
generate_struct_with_fields_tokens(
struct_name.clone(),
struct_tokens.vis.clone(),
bitfield_attribute.ty.clone(),
ignored_fields,
)
} else {
generate_tuple_struct_tokens(
struct_name.clone(),
struct_tokens.vis.clone(),
bitfield_attribute.ty.clone(),
)
};
let new_function = bitfield_attribute.generate_new_func.then(|| {
generate_new_function_tokens(
struct_tokens.vis.clone(),
fields,
ignored_fields,
&bitfield_attribute.ty,
)
});
let new_without_defaults_function = bitfield_attribute.generate_new_func.then(|| {
generate_new_without_defaults_function_tokens(
struct_tokens.vis.clone(),
fields,
ignored_fields,
&bitfield_attribute.ty,
)
});
let from_bits_function = bitfield_attribute.generate_from_bits_func.then(|| {
generate_from_bits_function_tokens(
struct_tokens.vis.clone(),
fields,
ignored_fields,
&bitfield_attribute.ty,
bitfield_attribute,
)
});
let from_bits_with_defaults_function = bitfield_attribute.generate_from_bits_func.then(|| {
generate_from_bits_with_defaults_function_tokens(
struct_tokens.vis.clone(),
fields,
&bitfield_attribute.ty,
bitfield_attribute,
!ignored_fields.is_empty(),
)
});
let generate_into_bits_function = bitfield_attribute.generate_into_bits_func.then(|| {
generate_into_bits_function_tokens(
struct_tokens.vis.clone(),
bitfield_attribute,
!ignored_fields.is_empty(),
)
});
let field_consts_tokens = generate_field_constants_tokens(struct_tokens.vis.clone(), fields);
let field_getters_tokens = generate_field_getters_functions_tokens(
struct_tokens.vis.clone(),
&bitfield_attribute.ty,
fields,
!ignored_fields.is_empty(),
)?;
let field_setters_tokens = generate_field_setters_functions_tokens(
struct_tokens.vis.clone(),
&bitfield_attribute.ty,
fields,
!ignored_fields.is_empty(),
);
let default_function = bitfield_attribute.generate_default_impl.then(|| {
generate_default_implementation_tokens(
struct_name.clone(),
&bitfield_attribute.ty,
fields,
ignored_fields,
)
});
let builder_tokens = bitfield_attribute.generate_builder.then(|| {
generate_builder_tokens(
struct_tokens.vis.clone(),
&bitfield_attribute.ty,
struct_name.clone(),
fields,
ignored_fields,
)
});
let from_bitfield_type_for_bitfield_function_tokens =
bitfield_attribute.generate_from_trait_funcs.then(|| {
generate_from_bitfield_type_for_bitfield_implementation_tokens(
struct_name.clone(),
fields,
ignored_fields,
&bitfield_attribute.ty,
)
});
let from_bitfield_for_bitfield_type_function_tokens =
bitfield_attribute.generate_from_trait_funcs.then(|| {
generate_from_bitfield_for_bitfield_type_implementation_tokens(
struct_name.clone(),
bitfield_attribute,
!ignored_fields.is_empty(),
)
});
let debug_impl = bitfield_attribute.generate_debug_impl.then(|| {
generate_debug_implementation(
struct_name.clone(),
bitfield_attribute,
fields,
!ignored_fields.is_empty(),
)
});
let get_bit_operations = bitfield_attribute.generate_bit_ops.then(|| {
generate_get_bit_tokens(
struct_tokens.vis.clone(),
&bitfield_attribute.ty,
fields,
!ignored_fields.is_empty(),
)
});
let set_bit_operations = bitfield_attribute.generate_bit_ops.then(|| {
generate_set_bit_tokens(
struct_tokens.vis.clone(),
&bitfield_attribute.ty,
fields,
!ignored_fields.is_empty(),
)
});
let to_builder_tokens = (bitfield_attribute.generate_builder
&& bitfield_attribute.generate_to_builder)
.then(|| generate_to_builder_tokens(struct_tokens.vis.clone(), struct_name.clone()));
let set_bits_operations = bitfield_attribute.generate_set_bits_impl.then(|| {
generate_set_bits_function_tokens(
struct_tokens.vis.clone(),
fields,
&bitfield_attribute.ty,
!ignored_fields.is_empty(),
)
});
let set_bits_with_defaults_operations = bitfield_attribute.generate_set_bits_impl.then(|| {
generate_set_bits_with_defaults_function_tokens(
struct_tokens.vis.clone(),
fields,
&bitfield_attribute.ty,
!ignored_fields.is_empty(),
)
});
let clear_bits_operations = bitfield_attribute.generate_clear_bits_impl.then(|| {
generate_clear_bits_function_tokens(
struct_tokens.vis.clone(),
fields,
&bitfield_attribute.ty,
!ignored_fields.is_empty(),
)
});
let clear_bits_preserve_defaults_operations =
bitfield_attribute.generate_clear_bits_impl.then(|| {
generate_clear_bits_preserve_defaults_function_tokens(
struct_tokens.vis.clone(),
fields,
&bitfield_attribute.ty,
!ignored_fields.is_empty(),
)
});
let default_attrs = if ignored_fields.is_empty() {
quote! {
#[repr(transparent)]
}
} else {
quote! {
#[repr(C)]
}
};
Ok(quote! {
#struct_attributes
#default_attrs
#bitfield_struct
impl #struct_name {
#new_function
#new_without_defaults_function
#from_bits_function
#from_bits_with_defaults_function
#generate_into_bits_function
#field_consts_tokens
#field_getters_tokens
#field_setters_tokens
#set_bits_operations
#set_bits_with_defaults_operations
#clear_bits_operations
#clear_bits_preserve_defaults_operations
#get_bit_operations
#set_bit_operations
#to_builder_tokens
}
#default_function
#builder_tokens
#from_bitfield_type_for_bitfield_function_tokens
#from_bitfield_for_bitfield_type_function_tokens
#debug_impl
})
}
/// Creates a syn error with the specified message that occurred at the
/// specified span.
pub(crate) fn create_syn_error(span: proc_macro2::Span, msg: impl fmt::Display) -> syn::Error {
syn::Error::new(span, msg)
}