1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
//! This crate is yet another bitfield handling implementation.
//! 
//! The main goal of this crate - provide binding for various data to every bit (flag) within bitfield layout.
//! In many cases bitfield data are read-only and every bit (flag) has some meaning.
//! Then you getting bitfield data it's useful to get meaning and/or description of setted flags.
//! 
//! This crate provides basic trait [BitFieldLayout] that provides convenient methods for getting flags
//! and it meanings of user defined structs or enums. Also there is module [layouts] with accessory
//! structs and macros.
//! 
//! # Example: simple string
//! Bits layout within bitfield may be associated with it meaning in many ways. The simple case - each
//! bit (flag) has simple string description.
//! 
//! ```
//! use std::{array, fmt, slice};
//! use either::Either;
//! use bitfield_layout::{Layout, BitFieldLayout};
//! 
//! // New struct that holds bitfield value
//! struct Simple(u8);
//! // Associated bit layout implementation
//! impl Layout for Simple {
//!     type Layout = slice::Iter<'static, &'static str>;
//!     fn layout() -> Self::Layout {
//!         [
//!             "First flag", 
//!             "Second flag", 
//!             "Third flag", 
//!             "Fourth flag", 
//!             "Fifth flag", 
//!             "Sixth flag", 
//!             "Seventh flag", 
//!             "Eighth flag", 
//!         ].iter()
//!     }
//! }
//! // Main trait implementation
//! impl BitFieldLayout for Simple {
//!     type Value = u8;
//!     fn get(&self) -> Self::Value { self.0 }
//!     fn set(&mut self, new: Self::Value) { self.0 = new; }
//! }
//! 
//! // Now we can use methods provided by trait
//! 
//! // Show full data layout (just show flag meanings that we defined)
//! let layout = Simple::layout();
//!
//! let layout_result = layout
//!     .cloned()
//!     .collect::<Vec<_>>();
//! let layout_sample = vec![
//!     "First flag",
//!     "Second flag",
//!     "Third flag",
//!     "Fourth flag",
//!     "Fifth flag",
//!     "Sixth flag",
//!     "Seventh flag",
//!     "Eighth flag",
//! ];
//! assert_eq!(layout_sample, layout_result, "Layout");
//! 
//! // Assign value to aur bitfield type
//! let simple = Simple(0b10101010);
//! // Show every bit (flag) state
//! let bits = simple.bits();
//!
//! let bits_result = bits
//!     .enumerate()
//!     .map(|(n, b)| format!("Bit #{}: {}", n, if b { "Is set" } else { "Not set" }))
//!     .collect::<Vec<_>>();
//! let bits_sample = vec![
//!     "Bit #0: Not set",
//!     "Bit #1: Is set",
//!     "Bit #2: Not set",
//!     "Bit #3: Is set",
//!     "Bit #4: Not set",
//!     "Bit #5: Is set",
//!     "Bit #6: Not set",
//!     "Bit #7: Is set",
//! ];
//! assert_eq!(bits_sample, bits_result, "Bits");
//! 
//! // Show bit (flag) state and it meaning
//! let flags = simple.flags();
//!
//! let flags_result = flags
//!     .map(|f| format!("`{}` is {}", f.value, f.is_set))
//!     .collect::<Vec<_>>();
//! let flags_sample = vec![
//!     "`First flag` is false",
//!     "`Second flag` is true",
//!     "`Third flag` is false",
//!     "`Fourth flag` is true",
//!     "`Fifth flag` is false",
//!     "`Sixth flag` is true",
//!     "`Seventh flag` is false",
//!     "`Eighth flag` is true",
//! ];
//! assert_eq!(flags_sample, flags_result, "Flags");
//! 
//! // Show difference between two bitfield values
//! let other = Simple(0b11001100);
//! let diff = simple.diff(other);
//!
//! let diff_result = diff
//!     .collect::<Vec<_>>();
//! let diff_sample = vec![
//!     Either::Left((1, &"Second flag")),
//!     Either::Right((2, &"Third flag")),
//!     Either::Left((5, &"Sixth flag")),
//!     Either::Right((6, &"Seventh flag")),
//! ];
//! assert_eq!(diff_sample, diff_result, "Diff");
//! ```
//! 
//! # Example: status register of MOS Technology 6502
//! One eight-bit field holds seven pieces of information:
//! 
//! Bit # | Name | Desription
//! ------|------|-----------
//!    0  | Carry flag | Enables numbers larger than a single word to be added/subtracted by carrying a binary digit from a less significant word to the least significant bit of a more significant word as needed.
//!    1  | Zero flag | Indicates that the result of an arithmetic or logical operation (or, sometimes, a load) was zero.
//!    2  | Interrupt flag | Indicates whether interrupts are enabled or masked.
//!    3  | Decimal flag | Indicates that a bit carry was produced between the nibbles as a result of the last arithmetic operation.
//!    4  | Break flag | It can be examined as a value stored on the stack.
//!    5  | Unused | Unused
//!    6  | Overflow flag | Indicates that the signed result of an operation is too large to fit in the register width using two's complement representation.
//!    7  | Negative flag | Indicates that the result of a mathematical operation is negative.
//! 
//! We can handle this register like:
//! ```
//! use std::{array, fmt, slice};
//! use bitfield_layout::{Layout, BitFieldLayout};
//! 
//! // Struct for handle flag name and flag description
//! struct NameAndDescription<'a>(&'a str, &'a str);
//! // Implement Display: Name for basic form "{}" and Description for alternative "{:#}"
//! impl<'a> fmt::Display for NameAndDescription<'a> {
//!     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
//!         let s = if f.alternate() { self.1 } else { self.0 };
//!         write!(f, "{}", s)
//!     }
//! }
//! 
//! // New struct that holds bitfield value
//! struct StatusRegister(u8);
//! // Associate bitfield layout with bitfield type
//! impl StatusRegister {
//!     const LAYOUT: [NameAndDescription<'static>; 8] = [
//!         NameAndDescription(
//!             "Carry flag",
//!             "Enables numbers larger than a single word to be added/subtracted by \
//!             carrying a binary digit from a less significant word to the least \
//!             significant bit of a more significant word as needed."
//!         ),
//!         NameAndDescription(
//!             "Zero flag",
//!             "Indicates that the result of an arithmetic or logical operation \
//!             (or, sometimes, a load) was zero."
//!         ),
//!         NameAndDescription(
//!             "Interrupt flag",
//!             "Indicates whether interrupts are enabled or masked."
//!         ),
//!         NameAndDescription(
//!             "Decimal flag",
//!             "Indicates that a bit carry was produced between the nibbles as a \
//!             result of the last arithmetic operation."
//!         ),
//!         NameAndDescription(
//!             "Break flag",
//!             "It can be examined as a value stored on the stack."
//!         ),
//!         NameAndDescription("Unused", "Unused"),
//!         NameAndDescription(
//!             "Overflow flag",
//!             "Indicates that the signed result of an operation is too large to \
//!             fit in the register width using two's complement representation."
//!         ),
//!         NameAndDescription(
//!             "Negative flag",
//!             "Indicates that the result of a mathematical operation is negative."
//!         ),
//!     ];
//! }
//! 
//! // Implement layout iterator
//! impl Layout for StatusRegister {
//!     type Layout = slice::Iter<'static, NameAndDescription<'static>>;
//!     // Take bitfield layout from associated constant
//!     fn layout() -> Self::Layout {
//!         StatusRegister::LAYOUT.iter()
//!     }
//! }
//! // Bitfield trait implementation
//! impl BitFieldLayout for StatusRegister {
//!     type Value = u8;
//!     fn get(&self) -> Self::Value { self.0 }
//!     fn set(&mut self, new: Self::Value) { self.0 = new; }
//! }
//! 
//! // For example our value has setted Carry and Negative flags
//! let status = StatusRegister(0b10000100);
//! 
//! let result = status.flags()
//!     .filter(|f| f.is_set)
//!     .map(|f| format!("Name: {}\nDescription: {:#}\n", f.value, f.value))
//!     .collect::<Vec<_>>()
//!     .join("\n");
//! let sample = "\
//! Name: Interrupt flag
//! Description: Indicates whether interrupts are enabled or masked.
//!
//! Name: Negative flag
//! Description: Indicates that the result of a mathematical operation is negative.
//! ";
//! assert_eq!(sample, result);
//! ```
//! 
//! ---
//! There are more examples in [layouts] and [BitField]




#![no_std]

use core::array;

use either::Either;

#[macro_use]
pub mod layouts;
pub use layouts::*;


/// Main trait for creating bitfield 
///
/// In general you need implement this trait and its dependencies: [Layout]. 
/// This trait already implemented for [BitField].
pub trait BitFieldLayout: Layout {
    type Value: Copy + IntoBits;
    /// Returns a copy of the contained value.
    fn get(&self) -> Self::Value;
    /// Sets the contained value.
    fn set(&mut self, new: Self::Value);

    /// Replaces the contained value with val, and returns the old contained value.
    fn replace(&mut self, new: Self::Value) -> Self::Value {
        let v = self.get();
        self.set(new);
        v
    }
    /// Swaps the values of two bitfields.
    fn swap(&mut self, other: &mut Self) {
        let (a, b) = (self.get(), other.get());
        self.set(b);
        other.set(a);
    }
    /// Updates the contained value using a function and returns the new value.
    fn update<F>(&mut self, f: F) -> Self::Value
    where
        F: FnOnce(Self::Value) -> Self::Value,
    {
        let v = f(self.get());
        self.set(v);
        v
    }
    /// Return iterator through bitfield value bits. Every bit represents as bool value.
    fn bits(&self) -> Bits<<Self::Value as IntoBits>::Bytes> {
        self.get().into_bits()
    }
    /// Return iterator through bitfield value flags. Every flag contains bit state (set or unset)
    /// and item (record) value - string in simple case.
    fn flags(&self) -> Flags<Self::Layout, Bits<<Self::Value as IntoBits>::Bytes>> {
        Flags::new(Self::layout(), self.bits())
    }
    /// Helps to find difference between two bitfield values.
    fn diff(&self, other: Self) -> Diff<Self::Layout, Bits<<Self::Value as IntoBits>::Bytes>>
    where
        Self: Sized,
    {
        Diff::new(self.flags(), other.flags())
    }
}

/// Associated bits layout
pub trait Layout {
    /// Layout iterator. Typically constant array or slice
    type Layout: Iterator;
    /// Return iterator through layout items. Actual layout may be implemented inside this
    /// function or be a associated constant of bitfield type
    fn layout() -> Self::Layout;
}


/// Converts value to bit iterator
pub trait IntoBits {
    type Bytes: Iterator<Item = u8>;
    fn into_bits(self) -> Bits<Self::Bytes>;
}
impl IntoBits for u8 {
    type Bytes = array::IntoIter<u8, 1>;
    fn into_bits(self) -> Bits<Self::Bytes> {
        self.to_ne_bytes().into_bits()
    }
}
impl IntoBits for u16 {
    type Bytes = array::IntoIter<u8, 2>;
    fn into_bits(self) -> Bits<Self::Bytes> {
        self.to_ne_bytes().into_bits()
    }
}
impl IntoBits for u32 {
    type Bytes = array::IntoIter<u8, 4>;
    fn into_bits(self) -> Bits<Self::Bytes> {
        self.to_ne_bytes().into_bits()
    }
}
impl IntoBits for u64 {
    type Bytes = array::IntoIter<u8, 8>;
    fn into_bits(self) -> Bits<Self::Bytes> {
        self.to_ne_bytes().into_bits()
    }
}
impl IntoBits for u128 {
    type Bytes = array::IntoIter<u8, 16>;
    fn into_bits(self) -> Bits<Self::Bytes> {
        self.to_ne_bytes().into_bits()
    }
}
impl<const N: usize> IntoBits for [u8; N] {
    type Bytes = array::IntoIter<u8, N>;
    fn into_bits(self) -> Bits<Self::Bytes> {
        Bits::new(array::IntoIter::new(self))
    }
}

/// Converts bit iterator to value
pub trait FromBits {
    fn from_bits<I: Iterator<Item = bool>>(bits: I) -> Self;
}
impl FromBits for u8 {
    fn from_bits<I: Iterator<Item = bool>>(bits: I) -> Self {
        u8::from_ne_bytes(<[u8; 1]>::from_bits(bits))
    }
}
impl FromBits for u16 {
    fn from_bits<I: Iterator<Item = bool>>(bits: I) -> Self {
        u16::from_ne_bytes(<[u8; 2]>::from_bits(bits))
    }
}
impl FromBits for u32 {
    fn from_bits<I: Iterator<Item = bool>>(bits: I) -> Self {
        u32::from_ne_bytes(<[u8; 4]>::from_bits(bits))
    }
}
impl FromBits for u64 {
    fn from_bits<I: Iterator<Item = bool>>(bits: I) -> Self {
        u64::from_ne_bytes(<[u8; 8]>::from_bits(bits))
    }
}
impl FromBits for u128 {
    fn from_bits<I: Iterator<Item = bool>>(bits: I) -> Self {
        u128::from_ne_bytes(<[u8; 16]>::from_bits(bits))
    }
}
impl<const N: usize> FromBits for [u8; N] {
    fn from_bits<I: Iterator<Item = bool>>(bits: I) -> Self {
        let mut result = [0u8; N];
        for (i, is_set) in bits.enumerate().take(N * 8) {
            if is_set {
                result[i / 8] |= 1 << (i % 8)
            }
        }
        result
    }
}

/// An iterator through value bits
#[derive(Debug, Clone)]
pub struct Bits<I> {
    iter: I,
    byte: u8,
    position: usize
}
impl<I: Iterator<Item = u8>> Bits<I> {
    pub fn new(iter: I) -> Self {
        Self { iter, byte: 0, position: 0 }
    }
}
impl<I: Iterator<Item = u8>> Iterator for Bits<I> {
    type Item = bool;

    fn next(&mut self) -> Option<Self::Item> {
        if self.position == 0 {
            self.byte = self.iter.next()?;
        }
        let position = self.position;
        self.position = (self.position + 1) % 8;
        Some(self.byte & (1 << position) != 0)
    }
}

/// Handle flag state and flag meaning
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Hash)]
pub struct Flag<T> {
    pub is_set: bool,
    pub value: T,
}

/// An iterator through [Flag]s
#[derive(Debug, Clone)]
pub struct Flags<L, B>
where
    L: Iterator,
    B: Iterator<Item = bool>
{
    layout: L,
    bits: B,
}
impl<L, B> Flags<L, B>
where
    L: Iterator,
    B: Iterator<Item = bool>
{
    pub fn new(layout: L, bits: B) -> Self {
        Self { layout, bits, }
    }
}
impl<L, B> Iterator for Flags<L, B>
where
    L: Iterator,
    B: Iterator<Item = bool>
{
    type Item = Flag<L::Item>;

    fn next(&mut self) -> Option<Self::Item> {
        let value = self.layout.next()?;
        let is_set = self.bits.next()?;
        Some(Flag { is_set, value })
    }
}

/// An iterator through non equal flags
#[derive(Debug, Clone)]
pub struct Diff<L, B>
where
    L: Iterator,
    B: Iterator<Item = bool>
{
    left: Flags<L, B>,
    right: Flags<L, B>,
    position: usize,
}
impl<L, B> Diff<L, B>
where
    L: Iterator,
    B: Iterator<Item = bool>
{
    fn new(left: Flags<L, B>, right: Flags<L, B>) -> Self {
        Self { left, right, position: 0 }
    }
}
impl<L, T, B> Iterator for Diff<L, B>
where
    L: Iterator<Item = T>,
    B: Iterator<Item = bool>
{
    type Item = Either<(usize, T), (usize, T)>;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let left = self.left.next()?;
            let right = self.right.next()?;
            let position = self.position;
            self.position += 1;
            match (left.is_set, right.is_set) {
                (true, false) =>
                    return Some(Either::Left((position, left.value))),
                (false, true) =>
                    return Some(Either::Right((position, right.value))),
                _ => continue,
            }
        }
    }
}

/// Accessory struct for convinient type construction
///
/// This structure holds value of created bitfield type and may be used for types that doesn't has
/// own value field: enums and unit-like structs.
///
/// ## Enum wrapper
/// Using enumeration as bitfield type has the following advantage - you can bind bit (flag) to one of
/// enum variants.
/// ```
/// # use std::{array, fmt, slice};
/// # use bitfield_layout::{BitFieldLayout, BitField, Layout};
/// 
/// // Declare new bitfield type
/// enum EightFlags {
///     One,
///     Two,
///     Three,
///     Four,
///     OemReserved(u8), // Reserved field referenced to multiple bits
///     FutureReserved(u8), // Reserved field referenced to multiple bits
/// }
/// // Implement Dispaly trait for basic and alternative views
/// impl fmt::Display for EightFlags {
///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
///         match (self, f.alternate()) {
///             // Basic view
///             (Self::One,   false) => write!(f, "one"),
///             (Self::Two,   false) => write!(f, "two"),
///             (Self::Three, false) => write!(f, "three"),
///             (Self::Four,  false) => write!(f, "four"),
///             // Alternative view
///             (Self::One,   true)  => write!(f, "ONE"),
///             (Self::Two,   true)  => write!(f, "TWO"),
///             (Self::Three, true)  => write!(f, "THREE"),
///             (Self::Four,  true)  => write!(f, "FOUR"),
///             // Reserved fields
///             (Self::OemReserved(v), _) => write!(f, "OEM reserved (#{})", v),
///             (Self::FutureReserved(v), _) => write!(f, "Reserved for future usage (#{})", v),
///         }
///     }
/// }
/// // Implement constant bit layout for this type
/// impl EightFlags {
///     const LAYOUT: [Self; 8] = [
///         Self::One,
///         Self::Two,
///         Self::Three,
///         Self::Four,
///         Self::OemReserved(4),
///         Self::OemReserved(5),
///         Self::FutureReserved(6),
///         Self::FutureReserved(7),
///     ];
/// }
/// // Implement Layout for enum created early
/// impl Layout for EightFlags {
///     type Layout = std::slice::Iter<'static, EightFlags>;
///     fn layout() -> Self::Layout { EightFlags::LAYOUT.iter() }
/// }
/// 
/// // Now we can use wrapped bitfield enum
/// let bf: BitField<EightFlags, u8> = BitField::new(0b01100101);
/// 
/// // Get only setted flags
/// let result = bf.flags()
///     .filter_map(|f| {
///         if f.is_set {
///             match f.value {
///                 EightFlags::OemReserved(v) =>
///                     Some(format!("Reserved flag #{}", v)),
///                 EightFlags::FutureReserved(_) =>
///                     Some(format!("{}", f.value)),
///                 v @ _ =>
///                     Some(format!("Name: {}, Description: {:#}", v, v)),
///             }
///         } else {
///             None
///         }
///     })
///     .collect::<Vec<_>>();
/// 
/// let sample = vec![
///     "Name: one, Description: ONE",
///     "Name: three, Description: THREE",
///     "Reserved flag #5",
///     "Reserved for future usage (#6)",
/// ];
/// assert_eq!(sample, result, "Wrapped enum");
/// ```
/// ## Unit-like struct wrapper
/// We can use bitfield type defined as unit-like struct in the same way as for
/// [enum](#enum-wrapper)
/// ```
/// # use std::{array, fmt, slice};
/// # use bitfield_layout::{BitFieldLayout, BitField, Layout};
/// 
/// // Unit-like struct without value
/// struct Status;
/// // Bind flags layout to this struct
/// impl Status {
///     const LAYOUT: [&'static str; 8] = [
///         "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
///     ];
/// }
/// // Implement layout trait
/// impl Layout for Status {
///     type Layout = core::slice::Iter<'static, &'static str>;
///     fn layout() -> Self::Layout { Status::LAYOUT.iter() }
/// }
/// 
/// let bf: BitField<Status, u8> = BitField::new(42);
/// // Get formatted strings from flags iteartor
/// let result = bf.flags()
///     .map(|f| format!("{:#}", f.value))
///     .collect::<Vec<_>>();
/// let sample = vec!["s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7"];
/// assert_eq!(sample, result, "Simple unit-like struct");
/// 
/// ```
/// ## Unit-like struct with associated constants
/// Also we can use unit-like struct with associated constant flags. This will gave us feauture to has
/// marked bits. This realisation somewhere in beetween enum and simple unit-like struct.
/// ```
/// # use std::{array, fmt, slice};
/// # use bitfield_layout::{BitFieldLayout, BitField, Layout};
/// 
/// 
/// // Unit-like struct without value
/// struct Status;
/// // Implement layout. You can leave comments on every item. For example, you can use bit id as
/// // Status::ONE.
/// impl Status {
///     const ONE: &'static str = "One";
///     const TWO: &'static str = "Two";
///     const THREE: &'static str = "Three";
///     const FOUR: &'static str = "Four";
///     const RESERVED: &'static str = "Reserved";
///     const UNKNOWN: &'static str = "Unknown";
/// 
///     const LAYOUT: [&'static str; 8] = [
///         Self::ONE,
///         Self::TWO,
///         Self::THREE,
///         Self::FOUR,
///         Self::RESERVED,
///         Self::RESERVED,
///         Self::RESERVED,
///         Self::UNKNOWN,
///     ];
/// }
/// // Implement layout trait
/// impl Layout for Status {
///     type Layout = core::slice::Iter<'static, &'static str>;
///     fn layout() -> Self::Layout { Status::LAYOUT.iter() }
/// }
/// 
/// let bf: BitField<Status, u8> = BitField::new(0b00001000);
/// let result = bf.flags()
///     .find(|f| f.is_set)
///     .map(|f| f.value)
///     .unwrap();
/// assert_eq!(Status::FOUR, *result, "Enumeration");
/// ```
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Hash)]
pub struct BitField<M, T> {
    _marker: core::marker::PhantomData<M>,
    pub value: T,
}
impl<M, T> BitField<M, T> {
    pub fn new(value: T) -> Self {
        Self {
            _marker: core::marker::PhantomData,
            value
        }
    }
}
impl<M: Layout, T> Layout for BitField<M, T> {
    type Layout = M::Layout;
    fn layout() -> Self::Layout { M::layout() }
}
impl<M: Layout, T: Copy + IntoBits> BitFieldLayout for BitField<M, T> {
    type Value = T;
    fn get(&self) -> Self::Value { self.value }
    fn set(&mut self, new: Self::Value) { self.value = new; }
}


#[cfg(test)]
#[macro_use]
extern crate std;

#[cfg(test)]
mod tests {
    use std::prelude::v1::*;
    use pretty_assertions::assert_eq;
    use super::*;

    #[test]
    fn bits() {
        let bits = Bits::new([13,42].iter().cloned());
        let sample = vec![
            true, false, true, true, false, false, false, false,
            false, true, false, true, false, true, false, false,
        ];
        let result = bits.collect::<Vec<_>>();
        assert_eq!(sample, result, "Bits");
    }


    #[test]
    fn flags() {
        let flags = Flags::new(
            ["Flag 1","Flag 2","Flag 3","Flag 4","Flag 5","Flag 6","Flag 7","Flag 8",]
                .iter(),
            [ false,   true,    false,   true,    true,    false,   false,   false, ]
                .iter().cloned(),
        );
        let sample = vec!["Flag 2","Flag 4","Flag 5",];
        let result = flags.filter_map(|f| Some(*f.value).filter(|_| f.is_set)).collect::<Vec<_>>();
        assert_eq!(sample, result, "Flags");
    }

    #[test]
    fn diff() {
        let layout = ["Flag 1","Flag 2","Flag 3","Flag 4","Flag 5","Flag 6","Flag 7","Flag 8",];
        let flags0 = Flags::new(
            layout.iter(),
            [ false,   true,    false,   true,    true,    false,   false,   false, ]
                .iter().cloned(),
        );
        let flags1 = Flags::new(
            layout.iter(),
            [ false,   true,    false,   false,    true,    false,   true,   false, ]
                .iter().cloned(),
        );
        let sample = vec![
            Either::Left((3, &"Flag 4")),
            Either::Right((6, &"Flag 7"))
        ];
        let result = Diff::new(flags0, flags1).collect::<Vec<_>>();
        assert_eq!(sample, result, "Diff");
    }
}