bitcoin/blockdata/
transaction.rs

1// SPDX-License-Identifier: CC0-1.0
2
3//! Bitcoin transactions.
4//!
5//! A transaction describes a transfer of money. It consumes previously-unspent
6//! transaction outputs and produces new ones, satisfying the condition to spend
7//! the old outputs (typically a digital signature with a specific key must be
8//! provided) and defining the condition to spend the new ones. The use of digital
9//! signatures ensures that coins cannot be spent by unauthorized parties.
10//!
11//! This module provides the structures and functions needed to support transactions.
12//!
13
14use core::str::FromStr;
15use core::{cmp, fmt};
16
17use hashes::{sha256d, Hash};
18use internals::write_err;
19use io::{Read, Write};
20use units::parse::{self, ParseIntError};
21
22use super::Weight;
23use crate::blockdata::locktime::absolute::{self, Height, Time};
24use crate::blockdata::locktime::relative::{self, TimeOverflowError};
25use crate::blockdata::script::{Script, ScriptBuf};
26use crate::blockdata::witness::Witness;
27use crate::blockdata::FeeRate;
28use crate::consensus::{encode, Decodable, Encodable};
29use crate::error::{ContainsPrefixError, MissingPrefixError, PrefixedHexError, UnprefixedHexError};
30use crate::internal_macros::{impl_consensus_encoding, impl_hashencode};
31use crate::prelude::*;
32#[cfg(doc)]
33use crate::sighash::{EcdsaSighashType, TapSighashType};
34use crate::{Amount, SignedAmount, VarInt};
35
36#[rustfmt::skip]                // Keep public re-exports separate.
37#[cfg(feature = "bitcoinconsensus")]
38#[doc(inline)]
39pub use crate::consensus::validation::TxVerifyError;
40
41hashes::hash_newtype! {
42    /// A bitcoin transaction hash/transaction ID.
43    ///
44    /// For compatibility with the existing Bitcoin infrastructure and historical and current
45    /// versions of the Bitcoin Core software itself, this and other [`sha256d::Hash`] types, are
46    /// serialized in reverse byte order when converted to a hex string via [`std::fmt::Display`]
47    /// trait operations. See [`hashes::Hash::DISPLAY_BACKWARD`] for more details.
48    pub struct Txid(sha256d::Hash);
49
50    /// A bitcoin witness transaction ID.
51    pub struct Wtxid(sha256d::Hash);
52}
53impl_hashencode!(Txid);
54impl_hashencode!(Wtxid);
55
56/// The marker MUST be a 1-byte zero value: 0x00. (BIP-141)
57const SEGWIT_MARKER: u8 = 0x00;
58/// The flag MUST be a 1-byte non-zero value. Currently, 0x01 MUST be used. (BIP-141)
59const SEGWIT_FLAG: u8 = 0x01;
60
61/// A reference to a transaction output.
62///
63/// ### Bitcoin Core References
64///
65/// * [COutPoint definition](https://github.com/bitcoin/bitcoin/blob/345457b542b6a980ccfbc868af0970a6f91d1b82/src/primitives/transaction.h#L26)
66#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
67pub struct OutPoint {
68    /// The referenced transaction's txid.
69    pub txid: Txid,
70    /// The index of the referenced output in its transaction's vout.
71    pub vout: u32,
72}
73#[cfg(feature = "serde")]
74crate::serde_utils::serde_struct_human_string_impl!(OutPoint, "an OutPoint", txid, vout);
75
76impl OutPoint {
77    /// The number of bytes that an outpoint contributes to the size of a transaction.
78    const SIZE: usize = 32 + 4; // The serialized lengths of txid and vout.
79
80    /// Creates a new [`OutPoint`].
81    #[inline]
82    pub const fn new(txid: Txid, vout: u32) -> OutPoint { OutPoint { txid, vout } }
83
84    /// Creates a "null" `OutPoint`.
85    ///
86    /// This value is used for coinbase transactions because they don't have any previous outputs.
87    #[inline]
88    pub fn null() -> OutPoint { OutPoint { txid: Hash::all_zeros(), vout: u32::MAX } }
89
90    /// Checks if an `OutPoint` is "null".
91    ///
92    /// # Examples
93    ///
94    /// ```rust
95    /// use bitcoin::consensus::params;
96    /// use bitcoin::constants::genesis_block;
97    /// use bitcoin::Network;
98    ///
99    /// let block = genesis_block(&params::MAINNET);
100    /// let tx = &block.txdata[0];
101    ///
102    /// // Coinbase transactions don't have any previous output.
103    /// assert!(tx.input[0].previous_output.is_null());
104    /// ```
105    #[inline]
106    pub fn is_null(&self) -> bool { *self == OutPoint::null() }
107}
108
109impl Default for OutPoint {
110    fn default() -> Self { OutPoint::null() }
111}
112
113impl fmt::Display for OutPoint {
114    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
115        write!(f, "{}:{}", self.txid, self.vout)
116    }
117}
118
119/// An error in parsing an OutPoint.
120#[derive(Debug, Clone, PartialEq, Eq)]
121#[non_exhaustive]
122pub enum ParseOutPointError {
123    /// Error in TXID part.
124    Txid(hex::HexToArrayError),
125    /// Error in vout part.
126    Vout(crate::error::ParseIntError),
127    /// Error in general format.
128    Format,
129    /// Size exceeds max.
130    TooLong,
131    /// Vout part is not strictly numeric without leading zeroes.
132    VoutNotCanonical,
133}
134
135internals::impl_from_infallible!(ParseOutPointError);
136
137impl fmt::Display for ParseOutPointError {
138    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
139        use ParseOutPointError::*;
140
141        match *self {
142            Txid(ref e) => write_err!(f, "error parsing TXID"; e),
143            Vout(ref e) => write_err!(f, "error parsing vout"; e),
144            Format => write!(f, "OutPoint not in <txid>:<vout> format"),
145            TooLong => write!(f, "vout should be at most 10 digits"),
146            VoutNotCanonical => write!(f, "no leading zeroes or + allowed in vout part"),
147        }
148    }
149}
150
151#[cfg(feature = "std")]
152impl std::error::Error for ParseOutPointError {
153    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
154        use ParseOutPointError::*;
155
156        match self {
157            Txid(e) => Some(e),
158            Vout(e) => Some(e),
159            Format | TooLong | VoutNotCanonical => None,
160        }
161    }
162}
163
164/// Parses a string-encoded transaction index (vout).
165///
166/// Does not permit leading zeroes or non-digit characters.
167fn parse_vout(s: &str) -> Result<u32, ParseOutPointError> {
168    if s.len() > 1 {
169        let first = s.chars().next().unwrap();
170        if first == '0' || first == '+' {
171            return Err(ParseOutPointError::VoutNotCanonical);
172        }
173    }
174    parse::int(s).map_err(ParseOutPointError::Vout)
175}
176
177impl core::str::FromStr for OutPoint {
178    type Err = ParseOutPointError;
179
180    fn from_str(s: &str) -> Result<Self, Self::Err> {
181        if s.len() > 75 {
182            // 64 + 1 + 10
183            return Err(ParseOutPointError::TooLong);
184        }
185        let find = s.find(':');
186        if find.is_none() || find != s.rfind(':') {
187            return Err(ParseOutPointError::Format);
188        }
189        let colon = find.unwrap();
190        if colon == 0 || colon == s.len() - 1 {
191            return Err(ParseOutPointError::Format);
192        }
193        Ok(OutPoint {
194            txid: s[..colon].parse().map_err(ParseOutPointError::Txid)?,
195            vout: parse_vout(&s[colon + 1..])?,
196        })
197    }
198}
199
200/// Bitcoin transaction input.
201///
202/// It contains the location of the previous transaction's output,
203/// that it spends and set of scripts that satisfy its spending
204/// conditions.
205///
206/// ### Bitcoin Core References
207///
208/// * [CTxIn definition](https://github.com/bitcoin/bitcoin/blob/345457b542b6a980ccfbc868af0970a6f91d1b82/src/primitives/transaction.h#L65)
209#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)]
210#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
211#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
212pub struct TxIn {
213    /// The reference to the previous output that is being used as an input.
214    pub previous_output: OutPoint,
215    /// The script which pushes values on the stack which will cause
216    /// the referenced output's script to be accepted.
217    pub script_sig: ScriptBuf,
218    /// The sequence number, which suggests to miners which of two
219    /// conflicting transactions should be preferred, or 0xFFFFFFFF
220    /// to ignore this feature. This is generally never used since
221    /// the miner behavior cannot be enforced.
222    pub sequence: Sequence,
223    /// Witness data: an array of byte-arrays.
224    /// Note that this field is *not* (de)serialized with the rest of the TxIn in
225    /// Encodable/Decodable, as it is (de)serialized at the end of the full
226    /// Transaction. It *is* (de)serialized with the rest of the TxIn in other
227    /// (de)serialization routines.
228    pub witness: Witness,
229}
230
231impl TxIn {
232    /// Returns the input base weight.
233    ///
234    /// Base weight excludes the witness and script.
235    const BASE_WEIGHT: Weight =
236        Weight::from_vb_unwrap(OutPoint::SIZE as u64 + Sequence::SIZE as u64);
237
238    /// Returns true if this input enables the [`absolute::LockTime`] (aka `nLockTime`) of its
239    /// [`Transaction`].
240    ///
241    /// `nLockTime` is enabled if *any* input enables it. See [`Transaction::is_lock_time_enabled`]
242    ///  to check the overall state. If none of the inputs enables it, the lock time value is simply
243    ///  ignored. If this returns false and OP_CHECKLOCKTIMEVERIFY is used in the redeem script with
244    ///  this input then the script execution will fail [BIP-0065].
245    ///
246    /// [BIP-65](https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki)
247    pub fn enables_lock_time(&self) -> bool { self.sequence != Sequence::MAX }
248
249    /// The weight of the TxIn when it's included in a legacy transaction (i.e., a transaction
250    /// having only legacy inputs).
251    ///
252    /// The witness weight is ignored here even when the witness is non-empty.
253    /// If you want the witness to be taken into account, use `TxIn::segwit_weight` instead.
254    ///
255    /// Keep in mind that when adding a TxIn to a transaction, the total weight of the transaction
256    /// might increase more than `TxIn::legacy_weight`. This happens when the new input added causes
257    /// the input length `VarInt` to increase its encoding length.
258    pub fn legacy_weight(&self) -> Weight {
259        Weight::from_non_witness_data_size(self.base_size() as u64)
260    }
261
262    /// The weight of the TxIn when it's included in a segwit transaction (i.e., a transaction
263    /// having at least one segwit input).
264    ///
265    /// This always takes into account the witness, even when empty, in which
266    /// case 1WU for the witness length varint (`00`) is included.
267    ///
268    /// Keep in mind that when adding a TxIn to a transaction, the total weight of the transaction
269    /// might increase more than `TxIn::segwit_weight`. This happens when:
270    /// - the new input added causes the input length `VarInt` to increase its encoding length
271    /// - the new input is the first segwit input added - this will add an additional 2WU to the
272    ///   transaction weight to take into account the segwit marker
273    pub fn segwit_weight(&self) -> Weight {
274        Weight::from_non_witness_data_size(self.base_size() as u64)
275            + Weight::from_witness_data_size(self.witness.size() as u64)
276    }
277
278    /// Returns the base size of this input.
279    ///
280    /// Base size excludes the witness data (see [`Self::total_size`]).
281    pub fn base_size(&self) -> usize {
282        let mut size = OutPoint::SIZE;
283
284        size += VarInt::from(self.script_sig.len()).size();
285        size += self.script_sig.len();
286
287        size + Sequence::SIZE
288    }
289
290    /// Returns the total number of bytes that this input contributes to a transaction.
291    ///
292    /// Total size includes the witness data (for base size see [`Self::base_size`]).
293    pub fn total_size(&self) -> usize { self.base_size() + self.witness.size() }
294}
295
296impl Default for TxIn {
297    fn default() -> TxIn {
298        TxIn {
299            previous_output: OutPoint::default(),
300            script_sig: ScriptBuf::new(),
301            sequence: Sequence::MAX,
302            witness: Witness::default(),
303        }
304    }
305}
306
307/// Bitcoin transaction input sequence number.
308///
309/// The sequence field is used for:
310/// - Indicating whether absolute lock-time (specified in `lock_time` field of [`Transaction`])
311///   is enabled.
312/// - Indicating and encoding [BIP-68] relative lock-times.
313/// - Indicating whether a transaction opts-in to [BIP-125] replace-by-fee.
314///
315/// Note that transactions spending an output with `OP_CHECKLOCKTIMEVERIFY`MUST NOT use
316/// `Sequence::MAX` for the corresponding input. [BIP-65]
317///
318/// [BIP-65]: <https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki>
319/// [BIP-68]: <https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki>
320/// [BIP-125]: <https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki>
321#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
322#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
323#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
324pub struct Sequence(pub u32);
325
326impl Sequence {
327    /// The maximum allowable sequence number.
328    ///
329    /// This sequence number disables absolute lock time and replace-by-fee.
330    pub const MAX: Self = Sequence(0xFFFFFFFF);
331    /// Zero value sequence.
332    ///
333    /// This sequence number enables replace-by-fee and absolute lock time.
334    pub const ZERO: Self = Sequence(0);
335    /// The sequence number that enables absolute lock time but disables replace-by-fee
336    /// and relative lock time.
337    pub const ENABLE_LOCKTIME_NO_RBF: Self = Sequence::MIN_NO_RBF;
338    /// The sequence number that enables replace-by-fee and absolute lock time but
339    /// disables relative lock time.
340    pub const ENABLE_RBF_NO_LOCKTIME: Self = Sequence(0xFFFFFFFD);
341
342    /// The number of bytes that a sequence number contributes to the size of a transaction.
343    const SIZE: usize = 4; // Serialized length of a u32.
344
345    /// The lowest sequence number that does not opt-in for replace-by-fee.
346    ///
347    /// A transaction is considered to have opted in to replacement of itself
348    /// if any of it's inputs have a `Sequence` number less than this value
349    /// (Explicit Signalling [BIP-125]).
350    ///
351    /// [BIP-125]: <https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki]>
352    const MIN_NO_RBF: Self = Sequence(0xFFFFFFFE);
353    /// BIP-68 relative lock time disable flag mask.
354    const LOCK_TIME_DISABLE_FLAG_MASK: u32 = 0x80000000;
355    /// BIP-68 relative lock time type flag mask.
356    const LOCK_TYPE_MASK: u32 = 0x00400000;
357
358    /// Returns `true` if the sequence number enables absolute lock-time ([`Transaction::lock_time`]).
359    #[inline]
360    pub fn enables_absolute_lock_time(&self) -> bool { *self != Sequence::MAX }
361
362    /// Returns `true` if the sequence number indicates that the transaction is finalized.
363    ///
364    /// Instead of this method please consider using `!enables_absolute_lock_time` because it
365    /// is equivalent and improves readability for those not steeped in Bitcoin folklore.
366    ///
367    /// ## Historical note
368    ///
369    /// The term 'final' is an archaic Bitcoin term, it may have come about because the sequence
370    /// number in the original Bitcoin code was intended to be incremented in order to replace a
371    /// transaction, so once the sequence number got to `u64::MAX` it could no longer be increased,
372    /// hence it was 'final'.
373    ///
374    ///
375    /// Some other references to the term:
376    /// - `CTxIn::SEQUENCE_FINAL` in the Bitcoin Core code.
377    /// - [BIP-112]: "BIP 68 prevents a non-final transaction from being selected for inclusion in a
378    ///   block until the corresponding input has reached the specified age"
379    ///
380    /// [BIP-112]: <https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki>
381    #[inline]
382    pub fn is_final(&self) -> bool { !self.enables_absolute_lock_time() }
383
384    /// Returns true if the transaction opted-in to BIP125 replace-by-fee.
385    ///
386    /// Replace by fee is signaled by the sequence being less than 0xfffffffe which is checked by
387    /// this method. Note, this is the highest "non-final" value (see [`Sequence::is_final`]).
388    #[inline]
389    pub fn is_rbf(&self) -> bool { *self < Sequence::MIN_NO_RBF }
390
391    /// Returns `true` if the sequence has a relative lock-time.
392    #[inline]
393    pub fn is_relative_lock_time(&self) -> bool {
394        self.0 & Sequence::LOCK_TIME_DISABLE_FLAG_MASK == 0
395    }
396
397    /// Returns `true` if the sequence number encodes a block based relative lock-time.
398    #[inline]
399    pub fn is_height_locked(&self) -> bool {
400        self.is_relative_lock_time() & (self.0 & Sequence::LOCK_TYPE_MASK == 0)
401    }
402
403    /// Returns `true` if the sequence number encodes a time interval based relative lock-time.
404    #[inline]
405    pub fn is_time_locked(&self) -> bool {
406        self.is_relative_lock_time() & (self.0 & Sequence::LOCK_TYPE_MASK > 0)
407    }
408
409    /// Creates a `Sequence` from an prefixed hex string.
410    pub fn from_hex(s: &str) -> Result<Self, PrefixedHexError> {
411        let stripped = if let Some(stripped) = s.strip_prefix("0x") {
412            stripped
413        } else if let Some(stripped) = s.strip_prefix("0X") {
414            stripped
415        } else {
416            return Err(MissingPrefixError::new(s).into());
417        };
418
419        let sequence = parse::hex_u32(stripped)?;
420        Ok(Self::from_consensus(sequence))
421    }
422
423    /// Creates a `Sequence` from an unprefixed hex string.
424    pub fn from_unprefixed_hex(s: &str) -> Result<Self, UnprefixedHexError> {
425        if s.starts_with("0x") || s.starts_with("0X") {
426            return Err(ContainsPrefixError::new(s).into());
427        }
428        let lock_time = parse::hex_u32(s)?;
429        Ok(Self::from_consensus(lock_time))
430    }
431
432    /// Creates a relative lock-time using block height.
433    #[inline]
434    pub fn from_height(height: u16) -> Self { Sequence(u32::from(height)) }
435
436    /// Creates a relative lock-time using time intervals where each interval is equivalent
437    /// to 512 seconds.
438    ///
439    /// Encoding finer granularity of time for relative lock-times is not supported in Bitcoin
440    #[inline]
441    pub fn from_512_second_intervals(intervals: u16) -> Self {
442        Sequence(u32::from(intervals) | Sequence::LOCK_TYPE_MASK)
443    }
444
445    /// Creates a relative lock-time from seconds, converting the seconds into 512 second
446    /// interval with floor division.
447    ///
448    /// Will return an error if the input cannot be encoded in 16 bits.
449    #[inline]
450    pub fn from_seconds_floor(seconds: u32) -> Result<Self, TimeOverflowError> {
451        if let Ok(interval) = u16::try_from(seconds / 512) {
452            Ok(Sequence::from_512_second_intervals(interval))
453        } else {
454            Err(TimeOverflowError::new(seconds))
455        }
456    }
457
458    /// Creates a relative lock-time from seconds, converting the seconds into 512 second
459    /// interval with ceiling division.
460    ///
461    /// Will return an error if the input cannot be encoded in 16 bits.
462    #[inline]
463    pub fn from_seconds_ceil(seconds: u32) -> Result<Self, TimeOverflowError> {
464        if let Ok(interval) = u16::try_from((seconds + 511) / 512) {
465            Ok(Sequence::from_512_second_intervals(interval))
466        } else {
467            Err(TimeOverflowError::new(seconds))
468        }
469    }
470
471    /// Creates a sequence from a u32 value.
472    #[inline]
473    pub fn from_consensus(n: u32) -> Self { Sequence(n) }
474
475    /// Returns the inner 32bit integer value of Sequence.
476    #[inline]
477    pub fn to_consensus_u32(self) -> u32 { self.0 }
478
479    /// Creates a [`relative::LockTime`] from this [`Sequence`] number.
480    #[inline]
481    pub fn to_relative_lock_time(&self) -> Option<relative::LockTime> {
482        use crate::locktime::relative::{Height, LockTime, Time};
483
484        if !self.is_relative_lock_time() {
485            return None;
486        }
487
488        let lock_value = self.low_u16();
489
490        if self.is_time_locked() {
491            Some(LockTime::from(Time::from_512_second_intervals(lock_value)))
492        } else {
493            Some(LockTime::from(Height::from(lock_value)))
494        }
495    }
496
497    /// Returns the low 16 bits from sequence number.
498    ///
499    /// BIP-68 only uses the low 16 bits for relative lock value.
500    fn low_u16(&self) -> u16 { self.0 as u16 }
501}
502
503impl Default for Sequence {
504    /// The default value of sequence is 0xffffffff.
505    fn default() -> Self { Sequence::MAX }
506}
507
508impl From<Sequence> for u32 {
509    fn from(sequence: Sequence) -> u32 { sequence.0 }
510}
511
512impl fmt::Display for Sequence {
513    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.0, f) }
514}
515
516impl fmt::LowerHex for Sequence {
517    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(&self.0, f) }
518}
519
520impl fmt::UpperHex for Sequence {
521    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::UpperHex::fmt(&self.0, f) }
522}
523
524impl fmt::Debug for Sequence {
525    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
526        // 10 because its 8 digits + 2 for the '0x'
527        write!(f, "Sequence({:#010x})", self.0)
528    }
529}
530
531impl FromStr for Sequence {
532    type Err = ParseIntError;
533
534    fn from_str(s: &str) -> Result<Self, Self::Err> {
535        parse::int::<u32, &str>(s).map(Sequence::from_consensus)
536    }
537}
538
539impl TryFrom<&str> for Sequence {
540    type Error = ParseIntError;
541
542    fn try_from(s: &str) -> Result<Self, Self::Error> { Sequence::from_str(s) }
543}
544
545impl TryFrom<String> for Sequence {
546    type Error = ParseIntError;
547
548    fn try_from(s: String) -> Result<Self, Self::Error> { Sequence::from_str(&s) }
549}
550
551impl TryFrom<Box<str>> for Sequence {
552    type Error = ParseIntError;
553
554    fn try_from(s: Box<str>) -> Result<Self, Self::Error> { Sequence::from_str(&s) }
555}
556
557/// Bitcoin transaction output.
558///
559/// Defines new coins to be created as a result of the transaction,
560/// along with spending conditions ("script", aka "output script"),
561/// which an input spending it must satisfy.
562///
563/// An output that is not yet spent by an input is called Unspent Transaction Output ("UTXO").
564///
565/// ### Bitcoin Core References
566///
567/// * [CTxOut definition](https://github.com/bitcoin/bitcoin/blob/345457b542b6a980ccfbc868af0970a6f91d1b82/src/primitives/transaction.h#L148)
568#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)]
569#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
570#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
571pub struct TxOut {
572    /// The value of the output, in satoshis.
573    pub value: Amount,
574    /// The script which must be satisfied for the output to be spent.
575    pub script_pubkey: ScriptBuf,
576}
577
578impl TxOut {
579    /// This is used as a "null txout" in consensus signing code.
580    pub const NULL: Self =
581        TxOut { value: Amount::from_sat(0xffffffffffffffff), script_pubkey: ScriptBuf::new() };
582
583    /// The weight of this output.
584    ///
585    /// Keep in mind that when adding a [`TxOut`] to a [`Transaction`] the total weight of the
586    /// transaction might increase more than `TxOut::weight`. This happens when the new output added
587    /// causes the output length `VarInt` to increase its encoding length.
588    ///
589    /// # Panics
590    ///
591    /// If output size * 4 overflows, this should never happen under normal conditions. Use
592    /// `Weght::from_vb_checked(self.size() as u64)` if you are concerned.
593    pub fn weight(&self) -> Weight {
594        // Size is equivalent to virtual size since all bytes of a TxOut are non-witness bytes.
595        Weight::from_vb(self.size() as u64).expect("should never happen under normal conditions")
596    }
597
598    /// Returns the total number of bytes that this output contributes to a transaction.
599    ///
600    /// There is no difference between base size vs total size for outputs.
601    pub fn size(&self) -> usize { size_from_script_pubkey(&self.script_pubkey) }
602
603    /// Creates a `TxOut` with given script and the smallest possible `value` that is **not** dust
604    /// per current Core policy.
605    ///
606    /// Dust depends on the -dustrelayfee value of the Bitcoin Core node you are broadcasting to.
607    /// This function uses the default value of 0.00003 BTC/kB (3 sat/vByte).
608    ///
609    /// To use a custom value, use [`minimal_non_dust_custom`].
610    ///
611    /// [`minimal_non_dust_custom`]: TxOut::minimal_non_dust_custom
612    pub fn minimal_non_dust(script_pubkey: ScriptBuf) -> Self {
613        TxOut { value: script_pubkey.minimal_non_dust(), script_pubkey }
614    }
615
616    /// Creates a `TxOut` with given script and the smallest possible `value` that is **not** dust
617    /// per current Core policy.
618    ///
619    /// Dust depends on the -dustrelayfee value of the Bitcoin Core node you are broadcasting to.
620    /// This function lets you set the fee rate used in dust calculation.
621    ///
622    /// The current default value in Bitcoin Core (as of v26) is 3 sat/vByte.
623    ///
624    /// To use the default Bitcoin Core value, use [`minimal_non_dust`].
625    ///
626    /// [`minimal_non_dust`]: TxOut::minimal_non_dust
627    pub fn minimal_non_dust_custom(script_pubkey: ScriptBuf, dust_relay_fee: FeeRate) -> Self {
628        TxOut { value: script_pubkey.minimal_non_dust_custom(dust_relay_fee), script_pubkey }
629    }
630}
631
632/// Returns the total number of bytes that this script pubkey would contribute to a transaction.
633fn size_from_script_pubkey(script_pubkey: &Script) -> usize {
634    let len = script_pubkey.len();
635    Amount::SIZE + VarInt::from(len).size() + len
636}
637
638/// Bitcoin transaction.
639///
640/// An authenticated movement of coins.
641///
642/// See [Bitcoin Wiki: Transaction][wiki-transaction] for more information.
643///
644/// [wiki-transaction]: https://en.bitcoin.it/wiki/Transaction
645///
646/// ### Bitcoin Core References
647///
648/// * [CTtransaction definition](https://github.com/bitcoin/bitcoin/blob/345457b542b6a980ccfbc868af0970a6f91d1b82/src/primitives/transaction.h#L279)
649///
650/// ### Serialization notes
651///
652/// If any inputs have nonempty witnesses, the entire transaction is serialized
653/// in the post-BIP141 Segwit format which includes a list of witnesses. If all
654/// inputs have empty witnesses, the transaction is serialized in the pre-BIP141
655/// format.
656///
657/// There is one major exception to this: to avoid deserialization ambiguity,
658/// if the transaction has no inputs, it is serialized in the BIP141 style. Be
659/// aware that this differs from the transaction format in PSBT, which _never_
660/// uses BIP141. (Ordinarily there is no conflict, since in PSBT transactions
661/// are always unsigned and therefore their inputs have empty witnesses.)
662///
663/// The specific ambiguity is that Segwit uses the flag bytes `0001` where an old
664/// serializer would read the number of transaction inputs. The old serializer
665/// would interpret this as "no inputs, one output", which means the transaction
666/// is invalid, and simply reject it. Segwit further specifies that this encoding
667/// should *only* be used when some input has a nonempty witness; that is,
668/// witness-less transactions should be encoded in the traditional format.
669///
670/// However, in protocols where transactions may legitimately have 0 inputs, e.g.
671/// when parties are cooperatively funding a transaction, the "00 means Segwit"
672/// heuristic does not work. Since Segwit requires such a transaction be encoded
673/// in the original transaction format (since it has no inputs and therefore
674/// no input witnesses), a traditionally encoded transaction may have the `0001`
675/// Segwit flag in it, which confuses most Segwit parsers including the one in
676/// Bitcoin Core.
677///
678/// We therefore deviate from the spec by always using the Segwit witness encoding
679/// for 0-input transactions, which results in unambiguously parseable transactions.
680///
681/// ### A note on ordering
682///
683/// This type implements `Ord`, even though it contains a locktime, which is not
684/// itself `Ord`. This was done to simplify applications that may need to hold
685/// transactions inside a sorted container. We have ordered the locktimes based
686/// on their representation as a `u32`, which is not a semantically meaningful
687/// order, and therefore the ordering on `Transaction` itself is not semantically
688/// meaningful either.
689///
690/// The ordering is, however, consistent with the ordering present in this library
691/// before this change, so users should not notice any breakage (here) when
692/// transitioning from 0.29 to 0.30.
693#[derive(Clone, PartialEq, Eq, Debug, Hash)]
694#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
695#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
696pub struct Transaction {
697    /// The protocol version, is currently expected to be 1 or 2 (BIP 68).
698    pub version: Version,
699    /// Block height or timestamp. Transaction cannot be included in a block until this height/time.
700    ///
701    /// ### Relevant BIPs
702    ///
703    /// * [BIP-65 OP_CHECKLOCKTIMEVERIFY](https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki)
704    /// * [BIP-113 Median time-past as endpoint for lock-time calculations](https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki)
705    pub lock_time: absolute::LockTime,
706    /// List of transaction inputs.
707    pub input: Vec<TxIn>,
708    /// List of transaction outputs.
709    pub output: Vec<TxOut>,
710}
711
712impl cmp::PartialOrd for Transaction {
713    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { Some(self.cmp(other)) }
714}
715impl cmp::Ord for Transaction {
716    fn cmp(&self, other: &Self) -> cmp::Ordering {
717        self.version
718            .cmp(&other.version)
719            .then(self.lock_time.to_consensus_u32().cmp(&other.lock_time.to_consensus_u32()))
720            .then(self.input.cmp(&other.input))
721            .then(self.output.cmp(&other.output))
722    }
723}
724
725impl Transaction {
726    // https://github.com/bitcoin/bitcoin/blob/44b05bf3fef2468783dcebf651654fdd30717e7e/src/policy/policy.h#L27
727    /// Maximum transaction weight for Bitcoin Core 25.0.
728    pub const MAX_STANDARD_WEIGHT: Weight = Weight::from_wu(400_000);
729
730    /// Computes a "normalized TXID" which does not include any signatures.
731    ///
732    /// This method is deprecated.  Use `compute_ntxid` instead.
733    #[deprecated(
734        since = "0.31.0",
735        note = "ntxid has been renamed to compute_ntxid to note that it's computationally expensive.  use compute_ntxid() instead."
736    )]
737    pub fn ntxid(&self) -> sha256d::Hash { self.compute_ntxid() }
738
739    /// Computes a "normalized TXID" which does not include any signatures.
740    ///
741    /// This gives a way to identify a transaction that is "the same" as
742    /// another in the sense of having same inputs and outputs.
743    #[doc(alias = "ntxid")]
744    pub fn compute_ntxid(&self) -> sha256d::Hash {
745        let cloned_tx = Transaction {
746            version: self.version,
747            lock_time: self.lock_time,
748            input: self
749                .input
750                .iter()
751                .map(|txin| TxIn {
752                    script_sig: ScriptBuf::new(),
753                    witness: Witness::default(),
754                    ..*txin
755                })
756                .collect(),
757            output: self.output.clone(),
758        };
759        cloned_tx.compute_txid().into()
760    }
761
762    /// Computes the [`Txid`].
763    ///
764    /// This method is deprecated.  Use `compute_txid` instead.
765    #[deprecated(
766        since = "0.31.0",
767        note = "txid has been renamed to compute_txid to note that it's computationally expensive.  use compute_txid() instead."
768    )]
769    pub fn txid(&self) -> Txid { self.compute_txid() }
770
771    /// Computes the [`Txid`].
772    ///
773    /// Hashes the transaction **excluding** the segwit data (i.e. the marker, flag bytes, and the
774    /// witness fields themselves). For non-segwit transactions which do not have any segwit data,
775    /// this will be equal to [`Transaction::compute_wtxid()`].
776    #[doc(alias = "txid")]
777    pub fn compute_txid(&self) -> Txid {
778        let mut enc = Txid::engine();
779        self.version.consensus_encode(&mut enc).expect("engines don't error");
780        self.input.consensus_encode(&mut enc).expect("engines don't error");
781        self.output.consensus_encode(&mut enc).expect("engines don't error");
782        self.lock_time.consensus_encode(&mut enc).expect("engines don't error");
783        Txid::from_engine(enc)
784    }
785
786    /// Computes the segwit version of the transaction id.
787    ///
788    /// This method is deprecated.  Use `compute_wtxid` instead.
789    #[deprecated(
790        since = "0.31.0",
791        note = "wtxid has been renamed to compute_wtxid to note that it's computationally expensive.  use compute_wtxid() instead."
792    )]
793    pub fn wtxid(&self) -> Wtxid { self.compute_wtxid() }
794
795    /// Computes the segwit version of the transaction id.
796    ///
797    /// Hashes the transaction **including** all segwit data (i.e. the marker, flag bytes, and the
798    /// witness fields themselves). For non-segwit transactions which do not have any segwit data,
799    /// this will be equal to [`Transaction::txid()`].
800    #[doc(alias = "wtxid")]
801    pub fn compute_wtxid(&self) -> Wtxid {
802        let mut enc = Wtxid::engine();
803        self.consensus_encode(&mut enc).expect("engines don't error");
804        Wtxid::from_engine(enc)
805    }
806
807    /// Returns the weight of this transaction, as defined by BIP-141.
808    ///
809    /// > Transaction weight is defined as Base transaction size * 3 + Total transaction size (ie.
810    /// > the same method as calculating Block weight from Base size and Total size).
811    ///
812    /// For transactions with an empty witness, this is simply the consensus-serialized size times
813    /// four. For transactions with a witness, this is the non-witness consensus-serialized size
814    /// multiplied by three plus the with-witness consensus-serialized size.
815    ///
816    /// For transactions with no inputs, this function will return a value 2 less than the actual
817    /// weight of the serialized transaction. The reason is that zero-input transactions, post-segwit,
818    /// cannot be unambiguously serialized; we make a choice that adds two extra bytes. For more
819    /// details see [BIP 141](https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki)
820    /// which uses a "input count" of `0x00` as a `marker` for a Segwit-encoded transaction.
821    ///
822    /// If you need to use 0-input transactions, we strongly recommend you do so using the PSBT
823    /// API. The unsigned transaction encoded within PSBT is always a non-segwit transaction
824    /// and can therefore avoid this ambiguity.
825    #[inline]
826    pub fn weight(&self) -> Weight {
827        // This is the exact definition of a weight unit, as defined by BIP-141 (quote above).
828        let wu = self.base_size() * 3 + self.total_size();
829        Weight::from_wu_usize(wu)
830    }
831
832    /// Returns the base transaction size.
833    ///
834    /// > Base transaction size is the size of the transaction serialised with the witness data stripped.
835    pub fn base_size(&self) -> usize {
836        let mut size: usize = 4; // Serialized length of a u32 for the version number.
837
838        size += VarInt::from(self.input.len()).size();
839        size += self.input.iter().map(|input| input.base_size()).sum::<usize>();
840
841        size += VarInt::from(self.output.len()).size();
842        size += self.output.iter().map(|output| output.size()).sum::<usize>();
843
844        size + absolute::LockTime::SIZE
845    }
846
847    /// Returns the total transaction size.
848    ///
849    /// > Total transaction size is the transaction size in bytes serialized as described in BIP144,
850    /// > including base data and witness data.
851    #[inline]
852    pub fn total_size(&self) -> usize {
853        let mut size: usize = 4; // Serialized length of a u32 for the version number.
854        let uses_segwit = self.uses_segwit_serialization();
855
856        if uses_segwit {
857            size += 2; // 1 byte for the marker and 1 for the flag.
858        }
859
860        size += VarInt::from(self.input.len()).size();
861        size += self
862            .input
863            .iter()
864            .map(|input| if uses_segwit { input.total_size() } else { input.base_size() })
865            .sum::<usize>();
866
867        size += VarInt::from(self.output.len()).size();
868        size += self.output.iter().map(|output| output.size()).sum::<usize>();
869
870        size + absolute::LockTime::SIZE
871    }
872
873    /// Returns the "virtual size" (vsize) of this transaction.
874    ///
875    /// Will be `ceil(weight / 4.0)`. Note this implements the virtual size as per [`BIP141`], which
876    /// is different to what is implemented in Bitcoin Core. The computation should be the same for
877    /// any remotely sane transaction, and a standardness-rule-correct version is available in the
878    /// [`policy`] module.
879    ///
880    /// > Virtual transaction size is defined as Transaction weight / 4 (rounded up to the next integer).
881    ///
882    /// [`BIP141`]: https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
883    /// [`policy`]: ../../policy/index.html
884    #[inline]
885    pub fn vsize(&self) -> usize {
886        // No overflow because it's computed from data in memory
887        self.weight().to_vbytes_ceil() as usize
888    }
889
890    /// Checks if this is a coinbase transaction.
891    ///
892    /// The first transaction in the block distributes the mining reward and is called the coinbase
893    /// transaction. It is impossible to check if the transaction is first in the block, so this
894    /// function checks the structure of the transaction instead - the previous output must be
895    /// all-zeros (creates satoshis "out of thin air").
896    #[doc(alias = "is_coin_base")] // method previously had this name
897    pub fn is_coinbase(&self) -> bool {
898        self.input.len() == 1 && self.input[0].previous_output.is_null()
899    }
900
901    /// Returns `true` if the transaction itself opted in to be BIP-125-replaceable (RBF).
902    ///
903    /// # Warning
904    ///
905    /// **Incorrectly relying on RBF may lead to monetary loss!**
906    ///
907    /// This **does not** cover the case where a transaction becomes replaceable due to ancestors
908    /// being RBF. Please note that transactions **may be replaced** even if they **do not** include
909    /// the RBF signal: <https://bitcoinops.org/en/newsletters/2022/10/19/#transaction-replacement-option>.
910    pub fn is_explicitly_rbf(&self) -> bool {
911        self.input.iter().any(|input| input.sequence.is_rbf())
912    }
913
914    /// Returns true if this [`Transaction`]'s absolute timelock is satisfied at `height`/`time`.
915    ///
916    /// # Returns
917    ///
918    /// By definition if the lock time is not enabled the transaction's absolute timelock is
919    /// considered to be satisfied i.e., there are no timelock constraints restricting this
920    /// transaction from being mined immediately.
921    pub fn is_absolute_timelock_satisfied(&self, height: Height, time: Time) -> bool {
922        if !self.is_lock_time_enabled() {
923            return true;
924        }
925        self.lock_time.is_satisfied_by(height, time)
926    }
927
928    /// Returns `true` if this transactions nLockTime is enabled ([BIP-65]).
929    ///
930    /// [BIP-65]: https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
931    pub fn is_lock_time_enabled(&self) -> bool { self.input.iter().any(|i| i.enables_lock_time()) }
932
933    /// Returns an iterator over lengths of `script_pubkey`s in the outputs.
934    ///
935    /// This is useful in combination with [`predict_weight`] if you have the transaction already
936    /// constructed with a dummy value in the fee output which you'll adjust after calculating the
937    /// weight.
938    pub fn script_pubkey_lens(&self) -> impl Iterator<Item = usize> + '_ {
939        self.output.iter().map(|txout| txout.script_pubkey.len())
940    }
941
942    /// Counts the total number of sigops.
943    ///
944    /// This value is for pre-taproot transactions only.
945    ///
946    /// > In taproot, a different mechanism is used. Instead of having a global per-block limit,
947    /// > there is a per-transaction-input limit, proportional to the size of that input.
948    /// > ref: <https://bitcoin.stackexchange.com/questions/117356/what-is-sigop-signature-operation#117359>
949    ///
950    /// The `spent` parameter is a closure/function that looks up the output being spent by each input
951    /// It takes in an [`OutPoint`] and returns a [`TxOut`]. If you can't provide this, a placeholder of
952    /// `|_| None` can be used. Without access to the previous [`TxOut`], any sigops in a redeemScript (P2SH)
953    /// as well as any segwit sigops will not be counted for that input.
954    pub fn total_sigop_cost<S>(&self, mut spent: S) -> usize
955    where
956        S: FnMut(&OutPoint) -> Option<TxOut>,
957    {
958        let mut cost = self.count_p2pk_p2pkh_sigops().saturating_mul(4);
959
960        // coinbase tx is correctly handled because `spent` will always returns None.
961        cost = cost.saturating_add(self.count_p2sh_sigops(&mut spent).saturating_mul(4));
962        cost.saturating_add(self.count_witness_sigops(&mut spent))
963    }
964
965    /// Gets the sigop count.
966    ///
967    /// Counts sigops for this transaction's input scriptSigs and output scriptPubkeys i.e., doesn't
968    /// count sigops in the redeemScript for p2sh or the sigops in the witness (use
969    /// `count_p2sh_sigops` and `count_witness_sigops` respectively).
970    fn count_p2pk_p2pkh_sigops(&self) -> usize {
971        let mut count: usize = 0;
972        for input in &self.input {
973            // 0 for p2wpkh, p2wsh, and p2sh (including wrapped segwit).
974            count = count.saturating_add(input.script_sig.count_sigops_legacy());
975        }
976        for output in &self.output {
977            count = count.saturating_add(output.script_pubkey.count_sigops_legacy());
978        }
979        count
980    }
981
982    /// Does not include wrapped segwit (see `count_witness_sigops`).
983    fn count_p2sh_sigops<S>(&self, spent: &mut S) -> usize
984    where
985        S: FnMut(&OutPoint) -> Option<TxOut>,
986    {
987        fn count_sigops(prevout: &TxOut, input: &TxIn) -> usize {
988            let mut count: usize = 0;
989            if prevout.script_pubkey.is_p2sh() {
990                if let Some(redeem) = input.script_sig.last_pushdata() {
991                    count =
992                        count.saturating_add(Script::from_bytes(redeem.as_bytes()).count_sigops());
993                }
994            }
995            count
996        }
997
998        let mut count: usize = 0;
999        for input in &self.input {
1000            if let Some(prevout) = spent(&input.previous_output) {
1001                count = count.saturating_add(count_sigops(&prevout, input));
1002            }
1003        }
1004        count
1005    }
1006
1007    /// Includes wrapped segwit (returns 0 for taproot spends).
1008    fn count_witness_sigops<S>(&self, spent: &mut S) -> usize
1009    where
1010        S: FnMut(&OutPoint) -> Option<TxOut>,
1011    {
1012        fn count_sigops_with_witness_program(witness: &Witness, witness_program: &Script) -> usize {
1013            if witness_program.is_p2wpkh() {
1014                1
1015            } else if witness_program.is_p2wsh() {
1016                // Treat the last item of the witness as the witnessScript
1017                witness.last().map(Script::from_bytes).map(|s| s.count_sigops()).unwrap_or(0)
1018            } else {
1019                0
1020            }
1021        }
1022
1023        fn count_sigops(prevout: TxOut, input: &TxIn) -> usize {
1024            let script_sig = &input.script_sig;
1025            let witness = &input.witness;
1026
1027            let witness_program = if prevout.script_pubkey.is_witness_program() {
1028                &prevout.script_pubkey
1029            } else if prevout.script_pubkey.is_p2sh() && script_sig.is_push_only() {
1030                // If prevout is P2SH and scriptSig is push only
1031                // then we wrap the last push (redeemScript) in a Script
1032                if let Some(push_bytes) = script_sig.last_pushdata() {
1033                    Script::from_bytes(push_bytes.as_bytes())
1034                } else {
1035                    return 0;
1036                }
1037            } else {
1038                return 0;
1039            };
1040
1041            // This will return 0 if the redeemScript wasn't a witness program
1042            count_sigops_with_witness_program(witness, witness_program)
1043        }
1044
1045        let mut count: usize = 0;
1046        for input in &self.input {
1047            if let Some(prevout) = spent(&input.previous_output) {
1048                count = count.saturating_add(count_sigops(prevout, input));
1049            }
1050        }
1051        count
1052    }
1053
1054    /// Returns whether or not to serialize transaction as specified in BIP-144.
1055    fn uses_segwit_serialization(&self) -> bool {
1056        if self.input.iter().any(|input| !input.witness.is_empty()) {
1057            return true;
1058        }
1059        // To avoid serialization ambiguity, no inputs means we use BIP141 serialization (see
1060        // `Transaction` docs for full explanation).
1061        self.input.is_empty()
1062    }
1063
1064    /// Returns a reference to the input at `input_index` if it exists.
1065    #[inline]
1066    pub fn tx_in(&self, input_index: usize) -> Result<&TxIn, InputsIndexError> {
1067        self.input
1068            .get(input_index)
1069            .ok_or(IndexOutOfBoundsError { index: input_index, length: self.input.len() }.into())
1070    }
1071
1072    /// Returns a reference to the output at `output_index` if it exists.
1073    #[inline]
1074    pub fn tx_out(&self, output_index: usize) -> Result<&TxOut, OutputsIndexError> {
1075        self.output
1076            .get(output_index)
1077            .ok_or(IndexOutOfBoundsError { index: output_index, length: self.output.len() }.into())
1078    }
1079}
1080
1081/// Error attempting to do an out of bounds access on the transaction inputs vector.
1082#[derive(Debug, Clone, PartialEq, Eq)]
1083pub struct InputsIndexError(pub IndexOutOfBoundsError);
1084
1085impl fmt::Display for InputsIndexError {
1086    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1087        write_err!(f, "invalid input index"; self.0)
1088    }
1089}
1090
1091#[cfg(feature = "std")]
1092impl std::error::Error for InputsIndexError {
1093    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { Some(&self.0) }
1094}
1095
1096impl From<IndexOutOfBoundsError> for InputsIndexError {
1097    fn from(e: IndexOutOfBoundsError) -> Self { Self(e) }
1098}
1099
1100/// Error attempting to do an out of bounds access on the transaction outputs vector.
1101#[derive(Debug, Clone, PartialEq, Eq)]
1102pub struct OutputsIndexError(pub IndexOutOfBoundsError);
1103
1104impl fmt::Display for OutputsIndexError {
1105    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1106        write_err!(f, "invalid output index"; self.0)
1107    }
1108}
1109
1110#[cfg(feature = "std")]
1111impl std::error::Error for OutputsIndexError {
1112    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { Some(&self.0) }
1113}
1114
1115impl From<IndexOutOfBoundsError> for OutputsIndexError {
1116    fn from(e: IndexOutOfBoundsError) -> Self { Self(e) }
1117}
1118
1119/// Error attempting to do an out of bounds access on a vector.
1120#[derive(Debug, Clone, PartialEq, Eq)]
1121#[non_exhaustive]
1122pub struct IndexOutOfBoundsError {
1123    /// Attempted index access.
1124    pub index: usize,
1125    /// Length of the vector where access was attempted.
1126    pub length: usize,
1127}
1128
1129impl fmt::Display for IndexOutOfBoundsError {
1130    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1131        write!(f, "index {} is out-of-bounds for vector with length {}", self.index, self.length)
1132    }
1133}
1134
1135#[cfg(feature = "std")]
1136impl std::error::Error for IndexOutOfBoundsError {
1137    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { None }
1138}
1139
1140/// The transaction version.
1141///
1142/// Currently, as specified by [BIP-68], only version 1 and 2 are considered standard.
1143///
1144/// Standardness of the inner `i32` is not an invariant because you are free to create transactions
1145/// of any version, transactions with non-standard version numbers will not be relayed by the
1146/// Bitcoin network.
1147///
1148/// [BIP-68]: https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
1149#[derive(Copy, PartialEq, Eq, Clone, Debug, PartialOrd, Ord, Hash)]
1150#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
1151#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
1152pub struct Version(pub i32);
1153
1154impl Version {
1155    /// The original Bitcoin transaction version (pre-BIP-68).
1156    pub const ONE: Self = Self(1);
1157
1158    /// The second Bitcoin transaction version (post-BIP-68).
1159    pub const TWO: Self = Self(2);
1160
1161    /// Creates a non-standard transaction version.
1162    pub fn non_standard(version: i32) -> Version { Self(version) }
1163
1164    /// Returns true if this transaction version number is considered standard.
1165    pub fn is_standard(&self) -> bool { *self == Version::ONE || *self == Version::TWO }
1166}
1167
1168impl Encodable for Version {
1169    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
1170        self.0.consensus_encode(w)
1171    }
1172}
1173
1174impl Decodable for Version {
1175    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
1176        Decodable::consensus_decode(r).map(Version)
1177    }
1178}
1179
1180impl fmt::Display for Version {
1181    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(&self.0, f) }
1182}
1183
1184impl_consensus_encoding!(TxOut, value, script_pubkey);
1185
1186impl Encodable for OutPoint {
1187    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
1188        let len = self.txid.consensus_encode(w)?;
1189        Ok(len + self.vout.consensus_encode(w)?)
1190    }
1191}
1192impl Decodable for OutPoint {
1193    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
1194        Ok(OutPoint {
1195            txid: Decodable::consensus_decode(r)?,
1196            vout: Decodable::consensus_decode(r)?,
1197        })
1198    }
1199}
1200
1201impl Encodable for TxIn {
1202    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
1203        let mut len = 0;
1204        len += self.previous_output.consensus_encode(w)?;
1205        len += self.script_sig.consensus_encode(w)?;
1206        len += self.sequence.consensus_encode(w)?;
1207        Ok(len)
1208    }
1209}
1210impl Decodable for TxIn {
1211    #[inline]
1212    fn consensus_decode_from_finite_reader<R: Read + ?Sized>(
1213        r: &mut R,
1214    ) -> Result<Self, encode::Error> {
1215        Ok(TxIn {
1216            previous_output: Decodable::consensus_decode_from_finite_reader(r)?,
1217            script_sig: Decodable::consensus_decode_from_finite_reader(r)?,
1218            sequence: Decodable::consensus_decode_from_finite_reader(r)?,
1219            witness: Witness::default(),
1220        })
1221    }
1222}
1223
1224impl Encodable for Sequence {
1225    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
1226        self.0.consensus_encode(w)
1227    }
1228}
1229
1230impl Decodable for Sequence {
1231    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
1232        Decodable::consensus_decode(r).map(Sequence)
1233    }
1234}
1235
1236impl Encodable for Transaction {
1237    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
1238        let mut len = 0;
1239        len += self.version.consensus_encode(w)?;
1240
1241        // Legacy transaction serialization format only includes inputs and outputs.
1242        if !self.uses_segwit_serialization() {
1243            len += self.input.consensus_encode(w)?;
1244            len += self.output.consensus_encode(w)?;
1245        } else {
1246            // BIP-141 (segwit) transaction serialization also includes marker, flag, and witness data.
1247            len += SEGWIT_MARKER.consensus_encode(w)?;
1248            len += SEGWIT_FLAG.consensus_encode(w)?;
1249            len += self.input.consensus_encode(w)?;
1250            len += self.output.consensus_encode(w)?;
1251            for input in &self.input {
1252                len += input.witness.consensus_encode(w)?;
1253            }
1254        }
1255        len += self.lock_time.consensus_encode(w)?;
1256        Ok(len)
1257    }
1258}
1259
1260impl Decodable for Transaction {
1261    fn consensus_decode_from_finite_reader<R: Read + ?Sized>(
1262        r: &mut R,
1263    ) -> Result<Self, encode::Error> {
1264        let version = Version::consensus_decode_from_finite_reader(r)?;
1265        let input = Vec::<TxIn>::consensus_decode_from_finite_reader(r)?;
1266        // segwit
1267        if input.is_empty() {
1268            let segwit_flag = u8::consensus_decode_from_finite_reader(r)?;
1269            match segwit_flag {
1270                // BIP144 input witnesses
1271                1 => {
1272                    let mut input = Vec::<TxIn>::consensus_decode_from_finite_reader(r)?;
1273                    let output = Vec::<TxOut>::consensus_decode_from_finite_reader(r)?;
1274                    for txin in input.iter_mut() {
1275                        txin.witness = Decodable::consensus_decode_from_finite_reader(r)?;
1276                    }
1277                    if !input.is_empty() && input.iter().all(|input| input.witness.is_empty()) {
1278                        Err(encode::Error::ParseFailed("witness flag set but no witnesses present"))
1279                    } else {
1280                        Ok(Transaction {
1281                            version,
1282                            input,
1283                            output,
1284                            lock_time: Decodable::consensus_decode_from_finite_reader(r)?,
1285                        })
1286                    }
1287                }
1288                // We don't support anything else
1289                x => Err(encode::Error::UnsupportedSegwitFlag(x)),
1290            }
1291        // non-segwit
1292        } else {
1293            Ok(Transaction {
1294                version,
1295                input,
1296                output: Decodable::consensus_decode_from_finite_reader(r)?,
1297                lock_time: Decodable::consensus_decode_from_finite_reader(r)?,
1298            })
1299        }
1300    }
1301}
1302
1303impl From<Transaction> for Txid {
1304    fn from(tx: Transaction) -> Txid { tx.compute_txid() }
1305}
1306
1307impl From<&Transaction> for Txid {
1308    fn from(tx: &Transaction) -> Txid { tx.compute_txid() }
1309}
1310
1311impl From<Transaction> for Wtxid {
1312    fn from(tx: Transaction) -> Wtxid { tx.compute_wtxid() }
1313}
1314
1315impl From<&Transaction> for Wtxid {
1316    fn from(tx: &Transaction) -> Wtxid { tx.compute_wtxid() }
1317}
1318
1319/// Computes the value of an output accounting for the cost of spending it.
1320///
1321/// The effective value is the value of an output value minus the amount to spend it.  That is, the
1322/// effective_value can be calculated as: value - (fee_rate * weight).
1323///
1324/// Note: the effective value of a [`Transaction`] may increase less than the effective value of
1325/// a [`TxOut`] when adding another [`TxOut`] to the transaction.  This happens when the new
1326/// [`TxOut`] added causes the output length `VarInt` to increase its encoding length.
1327///
1328/// # Arguments
1329///
1330/// * `fee_rate` - the fee rate of the transaction being created.
1331/// * `satisfaction_weight` - satisfied spending conditions weight.
1332pub fn effective_value(
1333    fee_rate: FeeRate,
1334    satisfaction_weight: Weight,
1335    value: Amount,
1336) -> Option<SignedAmount> {
1337    let weight = satisfaction_weight.checked_add(TxIn::BASE_WEIGHT)?;
1338    let signed_input_fee = fee_rate.checked_mul_by_weight(weight)?.to_signed().ok()?;
1339    value.to_signed().ok()?.checked_sub(signed_input_fee)
1340}
1341
1342/// Predicts the weight of a to-be-constructed transaction.
1343///
1344/// This function computes the weight of a transaction which is not fully known. All that is needed
1345/// is the lengths of scripts and witness elements.
1346///
1347/// # Arguments
1348///
1349/// * `inputs` - an iterator which returns `InputWeightPrediction` for each input of the
1350///   to-be-constructed transaction.
1351/// * `output_script_lens` - an iterator which returns the length of `script_pubkey` of each output
1352///   of the to-be-constructed transaction.
1353///
1354/// Note that lengths of the scripts and witness elements must be non-serialized, IOW *without* the
1355/// preceding compact size. The length of preceding compact size is computed and added inside the
1356/// function for convenience.
1357///
1358/// If you  have the transaction already constructed (except for signatures) with a dummy value for
1359/// fee output you can use the return value of [`Transaction::script_pubkey_lens`] method directly
1360/// as the second argument.
1361///
1362/// # Usage
1363///
1364/// When signing a transaction one doesn't know the signature before knowing the transaction fee and
1365/// the transaction fee is not known before knowing the transaction size which is not known before
1366/// knowing the signature. This apparent dependency cycle can be broken by knowing the length of the
1367/// signature without knowing the contents of the signature e.g., we know all Schnorr signatures
1368/// are 64 bytes long.
1369///
1370/// Additionally, some protocols may require calculating the amounts before knowing various parts
1371/// of the transaction (assuming their length is known).
1372///
1373/// # Notes on integer overflow
1374///
1375/// Overflows are intentionally not checked because one of the following holds:
1376///
1377/// * The transaction is valid (obeys the block size limit) and the code feeds correct values to
1378///   this function - no overflow can happen.
1379/// * The transaction will be so large it doesn't fit in the memory - overflow will happen but
1380///   then the transaction will fail to construct and even if one serialized it on disk directly
1381///   it'd be invalid anyway so overflow doesn't matter.
1382/// * The values fed into this function are inconsistent with the actual lengths the transaction
1383///   will have - the code is already broken and checking overflows doesn't help. Unfortunately
1384///   this probably cannot be avoided.
1385pub fn predict_weight<I, O>(inputs: I, output_script_lens: O) -> Weight
1386where
1387    I: IntoIterator<Item = InputWeightPrediction>,
1388    O: IntoIterator<Item = usize>,
1389{
1390    // This fold() does three things:
1391    // 1) Counts the inputs and returns the sum as `input_count`.
1392    // 2) Sums all of the input weights and returns the sum as `partial_input_weight`
1393    //    For every input: script_size * 4 + witness_size
1394    //    Since script_size is non-witness data, it gets a 4x multiplier.
1395    // 3) Counts the number of inputs that have a witness data and returns the count as
1396    //    `num_inputs_with_witnesses`.
1397    let (input_count, partial_input_weight, inputs_with_witnesses) = inputs.into_iter().fold(
1398        (0, 0, 0),
1399        |(count, partial_input_weight, inputs_with_witnesses), prediction| {
1400            (
1401                count + 1,
1402                partial_input_weight + prediction.weight().to_wu() as usize,
1403                inputs_with_witnesses + (prediction.witness_size > 0) as usize,
1404            )
1405        },
1406    );
1407
1408    // This fold() does two things:
1409    // 1) Counts the outputs and returns the sum as `output_count`.
1410    // 2) Sums the output script sizes and returns the sum as `output_scripts_size`.
1411    //    script_len + the length of a VarInt struct that stores the value of script_len
1412    let (output_count, output_scripts_size) = output_script_lens.into_iter().fold(
1413        (0, 0),
1414        |(output_count, total_scripts_size), script_len| {
1415            let script_size = script_len + VarInt(script_len as u64).size();
1416            (output_count + 1, total_scripts_size + script_size)
1417        },
1418    );
1419    predict_weight_internal(
1420        input_count,
1421        partial_input_weight,
1422        inputs_with_witnesses,
1423        output_count,
1424        output_scripts_size,
1425    )
1426}
1427
1428const fn predict_weight_internal(
1429    input_count: usize,
1430    partial_input_weight: usize,
1431    inputs_with_witnesses: usize,
1432    output_count: usize,
1433    output_scripts_size: usize,
1434) -> Weight {
1435    // Lengths of txid, index and sequence: (32, 4, 4).
1436    // Multiply the lengths by 4 since the fields are all non-witness fields.
1437    let input_weight = partial_input_weight + input_count * 4 * (32 + 4 + 4);
1438
1439    // The value field of a TxOut is 8 bytes.
1440    let output_size = 8 * output_count + output_scripts_size;
1441    let non_input_size =
1442    // version:
1443        4 +
1444    // count varints:
1445        VarInt(input_count as u64).size() +
1446        VarInt(output_count as u64).size() +
1447        output_size +
1448    // lock_time
1449        4;
1450    let weight = if inputs_with_witnesses == 0 {
1451        non_input_size * 4 + input_weight
1452    } else {
1453        non_input_size * 4 + input_weight + input_count - inputs_with_witnesses + 2
1454    };
1455    Weight::from_wu(weight as u64)
1456}
1457
1458/// Predicts the weight of a to-be-constructed transaction in const context.
1459///
1460/// This is a `const` version of [`predict_weight`] which only allows slices due to current Rust
1461/// limitations around `const fn`. Because of these limitations it may be less efficient than
1462/// `predict_weight` and thus is intended to be only used in `const` context.
1463///
1464/// Please see the documentation of `predict_weight` to learn more about this function.
1465pub const fn predict_weight_from_slices(
1466    inputs: &[InputWeightPrediction],
1467    output_script_lens: &[usize],
1468) -> Weight {
1469    let mut partial_input_weight = 0;
1470    let mut inputs_with_witnesses = 0;
1471
1472    // for loops not supported in const fn
1473    let mut i = 0;
1474    while i < inputs.len() {
1475        let prediction = inputs[i];
1476        partial_input_weight += prediction.weight().to_wu() as usize;
1477        inputs_with_witnesses += (prediction.witness_size > 0) as usize;
1478        i += 1;
1479    }
1480
1481    let mut output_scripts_size = 0;
1482
1483    i = 0;
1484    while i < output_script_lens.len() {
1485        let script_len = output_script_lens[i];
1486        output_scripts_size += script_len + VarInt(script_len as u64).size();
1487        i += 1;
1488    }
1489
1490    predict_weight_internal(
1491        inputs.len(),
1492        partial_input_weight,
1493        inputs_with_witnesses,
1494        output_script_lens.len(),
1495        output_scripts_size,
1496    )
1497}
1498
1499/// Weight prediction of an individual input.
1500///
1501/// This helper type collects information about an input to be used in [`predict_weight`] function.
1502/// It can only be created using the [`new`](InputWeightPrediction::new) function or using other
1503/// associated constants/methods.
1504#[derive(Copy, Clone, Debug)]
1505pub struct InputWeightPrediction {
1506    script_size: usize,
1507    witness_size: usize,
1508}
1509
1510impl InputWeightPrediction {
1511    /// Input weight prediction corresponding to spending of P2WPKH output with the largest possible
1512    /// DER-encoded signature.
1513    ///
1514    /// If the input in your transaction uses P2WPKH you can use this instead of
1515    /// [`InputWeightPrediction::new`].
1516    ///
1517    /// This is useful when you **do not** use [signature grinding] and want to ensure you are not
1518    /// under-paying. See [`ground_p2wpkh`](Self::ground_p2wpkh) if you do use signature grinding.
1519    ///
1520    /// [signature grinding]: https://bitcoin.stackexchange.com/questions/111660/what-is-signature-grinding
1521    pub const P2WPKH_MAX: Self = InputWeightPrediction::from_slice(0, &[72, 33]);
1522
1523    /// Input weight prediction corresponding to spending of a P2PKH output with the largest possible
1524    /// DER-encoded signature, and a compressed public key.
1525    ///
1526    /// If the input in your transaction uses P2PKH with a compressed key, you can use this instead of
1527    /// [`InputWeightPrediction::new`].
1528    ///
1529    /// This is useful when you **do not** use [signature grinding] and want to ensure you are not
1530    /// under-paying. See [`ground_p2pkh_compressed`](Self::ground_p2pkh_compressed) if you do use
1531    /// signature grinding.
1532    ///
1533    /// [signature grinding]: https://bitcoin.stackexchange.com/questions/111660/what-is-signature-grinding
1534    pub const P2PKH_COMPRESSED_MAX: Self = InputWeightPrediction::from_slice(107, &[]);
1535
1536    /// Input weight prediction corresponding to spending of a P2PKH output with the largest possible
1537    /// DER-encoded signature, and an uncompressed public key.
1538    ///
1539    /// If the input in your transaction uses P2PKH with an uncompressed key, you can use this instead of
1540    /// [`InputWeightPrediction::new`].
1541    pub const P2PKH_UNCOMPRESSED_MAX: Self = InputWeightPrediction::from_slice(139, &[]);
1542
1543    /// Input weight prediction corresponding to spending of taproot output using the key and
1544    /// default sighash.
1545    ///
1546    /// If the input in your transaction uses Taproot key spend you can use this instead of
1547    /// [`InputWeightPrediction::new`].
1548    pub const P2TR_KEY_DEFAULT_SIGHASH: Self = InputWeightPrediction::from_slice(0, &[64]);
1549
1550    /// Input weight prediction corresponding to spending of taproot output using the key and
1551    /// **non**-default sighash.
1552    ///
1553    /// If the input in your transaction uses Taproot key spend you can use this instead of
1554    /// [`InputWeightPrediction::new`].
1555    pub const P2TR_KEY_NON_DEFAULT_SIGHASH: Self = InputWeightPrediction::from_slice(0, &[65]);
1556
1557    /// Input weight prediction corresponding to spending of P2WPKH output using [signature
1558    /// grinding].
1559    ///
1560    /// If the input in your transaction uses P2WPKH and you use signature grinding you can use this
1561    /// instead of [`InputWeightPrediction::new`]. See [`P2WPKH_MAX`](Self::P2WPKH_MAX) if you don't
1562    /// use signature grinding.
1563    ///
1564    /// Note: `bytes_to_grind` is usually `1` because of exponential cost of higher values.
1565    ///
1566    /// # Panics
1567    ///
1568    /// The funcion panics in const context and debug builds if `bytes_to_grind` is higher than 62.
1569    ///
1570    /// [signature grinding]: https://bitcoin.stackexchange.com/questions/111660/what-is-signature-grinding
1571    pub const fn ground_p2wpkh(bytes_to_grind: usize) -> Self {
1572        // Written to trigger const/debug panic for unreasonably high values.
1573        let der_signature_size = 10 + (62 - bytes_to_grind);
1574        InputWeightPrediction::from_slice(0, &[der_signature_size, 33])
1575    }
1576
1577    /// Input weight prediction corresponding to spending of a P2PKH output using [signature
1578    /// grinding], and a compressed public key.
1579    ///
1580    /// If the input in your transaction uses compressed P2PKH and you use signature grinding you
1581    /// can use this instead of [`InputWeightPrediction::new`]. See
1582    /// [`P2PKH_COMPRESSED_MAX`](Self::P2PKH_COMPRESSED_MAX) if you don't use signature grinding.
1583    ///
1584    /// Note: `bytes_to_grind` is usually `1` because of exponential cost of higher values.
1585    ///
1586    /// # Panics
1587    ///
1588    /// The funcion panics in const context and debug builds if `bytes_to_grind` is higher than 62.
1589    ///
1590    /// [signature grinding]: https://bitcoin.stackexchange.com/questions/111660/what-is-signature-grinding
1591    pub const fn ground_p2pkh_compressed(bytes_to_grind: usize) -> Self {
1592        // Written to trigger const/debug panic for unreasonably high values.
1593        let der_signature_size = 10 + (62 - bytes_to_grind);
1594
1595        InputWeightPrediction::from_slice(2 + 33 + der_signature_size, &[])
1596    }
1597
1598    /// Computes the prediction for a single input.
1599    pub fn new<T>(input_script_len: usize, witness_element_lengths: T) -> Self
1600    where
1601        T: IntoIterator,
1602        T::Item: Borrow<usize>,
1603    {
1604        let (count, total_size) =
1605            witness_element_lengths.into_iter().fold((0, 0), |(count, total_size), elem_len| {
1606                let elem_len = *elem_len.borrow();
1607                let elem_size = elem_len + VarInt(elem_len as u64).size();
1608                (count + 1, total_size + elem_size)
1609            });
1610        let witness_size = if count > 0 { total_size + VarInt(count as u64).size() } else { 0 };
1611        let script_size = input_script_len + VarInt(input_script_len as u64).size();
1612
1613        InputWeightPrediction { script_size, witness_size }
1614    }
1615
1616    /// Computes the prediction for a single input in `const` context.
1617    ///
1618    /// This is a `const` version of [`new`](Self::new) which only allows slices due to current Rust
1619    /// limitations around `const fn`. Because of these limitations it may be less efficient than
1620    /// `new` and thus is intended to be only used in `const` context.
1621    pub const fn from_slice(input_script_len: usize, witness_element_lengths: &[usize]) -> Self {
1622        let mut i = 0;
1623        let mut total_size = 0;
1624        // for loops not supported in const fn
1625        while i < witness_element_lengths.len() {
1626            let elem_len = witness_element_lengths[i];
1627            let elem_size = elem_len + VarInt(elem_len as u64).size();
1628            total_size += elem_size;
1629            i += 1;
1630        }
1631        let witness_size = if !witness_element_lengths.is_empty() {
1632            total_size + VarInt(witness_element_lengths.len() as u64).size()
1633        } else {
1634            0
1635        };
1636        let script_size = input_script_len + VarInt(input_script_len as u64).size();
1637
1638        InputWeightPrediction { script_size, witness_size }
1639    }
1640
1641    /// Tallies the total weight added to a transaction by an input with this weight prediction,
1642    /// not counting potential witness flag bytes or the witness count varint.
1643    pub const fn weight(&self) -> Weight {
1644        Weight::from_wu_usize(self.script_size * 4 + self.witness_size)
1645    }
1646}
1647
1648#[cfg(test)]
1649mod tests {
1650    use core::str::FromStr;
1651
1652    use hex::{test_hex_unwrap as hex, FromHex};
1653
1654    use super::*;
1655    use crate::blockdata::constants::WITNESS_SCALE_FACTOR;
1656    use crate::consensus::encode::{deserialize, serialize};
1657    use crate::sighash::EcdsaSighashType;
1658
1659    const SOME_TX: &str = "0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b3839e2bbf32d826a1e222031fd888ac00000000";
1660
1661    #[test]
1662    fn encode_to_unsized_writer() {
1663        let mut buf = [0u8; 1024];
1664        let raw_tx = hex!(SOME_TX);
1665        let tx: Transaction = Decodable::consensus_decode(&mut raw_tx.as_slice()).unwrap();
1666
1667        let size = tx.consensus_encode(&mut &mut buf[..]).unwrap();
1668        assert_eq!(size, SOME_TX.len() / 2);
1669        assert_eq!(raw_tx, &buf[..size]);
1670    }
1671
1672    #[test]
1673    fn outpoint() {
1674        assert_eq!(OutPoint::from_str("i don't care"), Err(ParseOutPointError::Format));
1675        assert_eq!(
1676            OutPoint::from_str(
1677                "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456:1:1"
1678            ),
1679            Err(ParseOutPointError::Format)
1680        );
1681        assert_eq!(
1682            OutPoint::from_str("5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456:"),
1683            Err(ParseOutPointError::Format)
1684        );
1685        assert_eq!(
1686            OutPoint::from_str(
1687                "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456:11111111111"
1688            ),
1689            Err(ParseOutPointError::TooLong)
1690        );
1691        assert_eq!(
1692            OutPoint::from_str(
1693                "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456:01"
1694            ),
1695            Err(ParseOutPointError::VoutNotCanonical)
1696        );
1697        assert_eq!(
1698            OutPoint::from_str(
1699                "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456:+42"
1700            ),
1701            Err(ParseOutPointError::VoutNotCanonical)
1702        );
1703        assert_eq!(
1704            OutPoint::from_str("i don't care:1"),
1705            Err(ParseOutPointError::Txid("i don't care".parse::<Txid>().unwrap_err()))
1706        );
1707        assert_eq!(
1708            OutPoint::from_str(
1709                "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c945X:1"
1710            ),
1711            Err(ParseOutPointError::Txid(
1712                "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c945X"
1713                    .parse::<Txid>()
1714                    .unwrap_err()
1715            ))
1716        );
1717        assert_eq!(
1718            OutPoint::from_str(
1719                "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456:lol"
1720            ),
1721            Err(ParseOutPointError::Vout(parse::int::<u32, _>("lol").unwrap_err()))
1722        );
1723
1724        assert_eq!(
1725            OutPoint::from_str(
1726                "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456:42"
1727            ),
1728            Ok(OutPoint {
1729                txid: "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456"
1730                    .parse()
1731                    .unwrap(),
1732                vout: 42,
1733            })
1734        );
1735        assert_eq!(
1736            OutPoint::from_str(
1737                "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456:0"
1738            ),
1739            Ok(OutPoint {
1740                txid: "5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456"
1741                    .parse()
1742                    .unwrap(),
1743                vout: 0,
1744            })
1745        );
1746    }
1747
1748    #[test]
1749    fn txin() {
1750        let txin: Result<TxIn, _> = deserialize(&hex!("a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff"));
1751        assert!(txin.is_ok());
1752    }
1753
1754    #[test]
1755    fn txin_default() {
1756        let txin = TxIn::default();
1757        assert_eq!(txin.previous_output, OutPoint::default());
1758        assert_eq!(txin.script_sig, ScriptBuf::new());
1759        assert_eq!(txin.sequence, Sequence::from_consensus(0xFFFFFFFF));
1760        assert_eq!(txin.previous_output, OutPoint::default());
1761        assert_eq!(txin.witness.len(), 0);
1762    }
1763
1764    #[test]
1765    fn is_coinbase() {
1766        use crate::blockdata::constants;
1767        use crate::network::Network;
1768
1769        let genesis = constants::genesis_block(Network::Bitcoin);
1770        assert!(genesis.txdata[0].is_coinbase());
1771        let tx_bytes = hex!("0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b3839e2bbf32d826a1e222031fd888ac00000000");
1772        let tx: Transaction = deserialize(&tx_bytes).unwrap();
1773        assert!(!tx.is_coinbase());
1774    }
1775
1776    #[test]
1777    fn nonsegwit_transaction() {
1778        let tx_bytes = hex!("0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b3839e2bbf32d826a1e222031fd888ac00000000");
1779        let tx: Result<Transaction, _> = deserialize(&tx_bytes);
1780        assert!(tx.is_ok());
1781        let realtx = tx.unwrap();
1782        // All these tests aren't really needed because if they fail, the hash check at the end
1783        // will also fail. But these will show you where the failure is so I'll leave them in.
1784        assert_eq!(realtx.version, Version::ONE);
1785        assert_eq!(realtx.input.len(), 1);
1786        // In particular this one is easy to get backward -- in bitcoin hashes are encoded
1787        // as little-endian 256-bit numbers rather than as data strings.
1788        assert_eq!(
1789            format!("{:x}", realtx.input[0].previous_output.txid),
1790            "ce9ea9f6f5e422c6a9dbcddb3b9a14d1c78fab9ab520cb281aa2a74a09575da1".to_string()
1791        );
1792        assert_eq!(realtx.input[0].previous_output.vout, 1);
1793        assert_eq!(realtx.output.len(), 1);
1794        assert_eq!(realtx.lock_time, absolute::LockTime::ZERO);
1795
1796        assert_eq!(
1797            format!("{:x}", realtx.compute_txid()),
1798            "a6eab3c14ab5272a58a5ba91505ba1a4b6d7a3a9fcbd187b6cd99a7b6d548cb7".to_string()
1799        );
1800        assert_eq!(
1801            format!("{:x}", realtx.compute_wtxid()),
1802            "a6eab3c14ab5272a58a5ba91505ba1a4b6d7a3a9fcbd187b6cd99a7b6d548cb7".to_string()
1803        );
1804        assert_eq!(realtx.weight().to_wu() as usize, tx_bytes.len() * WITNESS_SCALE_FACTOR);
1805        assert_eq!(realtx.total_size(), tx_bytes.len());
1806        assert_eq!(realtx.vsize(), tx_bytes.len());
1807        assert_eq!(realtx.base_size(), tx_bytes.len());
1808    }
1809
1810    #[test]
1811    fn segwit_invalid_transaction() {
1812        let tx_bytes = hex!("0000fd000001021921212121212121212121f8b372b0239cc1dff600000000004f4f4f4f4f4f4f4f000000000000000000000000000000333732343133380d000000000000000000000000000000ff000000000009000dff000000000000000800000000000000000d");
1813        let tx: Result<Transaction, _> = deserialize(&tx_bytes);
1814        assert!(tx.is_err());
1815        assert!(tx.unwrap_err().to_string().contains("witness flag set but no witnesses present"));
1816    }
1817
1818    #[test]
1819    fn segwit_transaction() {
1820        let tx_bytes = hex!(
1821            "02000000000101595895ea20179de87052b4046dfe6fd515860505d6511a9004cf12a1f93cac7c01000000\
1822            00ffffffff01deb807000000000017a9140f3444e271620c736808aa7b33e370bd87cb5a078702483045022\
1823            100fb60dad8df4af2841adc0346638c16d0b8035f5e3f3753b88db122e70c79f9370220756e6633b17fd271\
1824            0e626347d28d60b0a2d6cbb41de51740644b9fb3ba7751040121028fa937ca8cba2197a37c007176ed89410\
1825            55d3bcb8627d085e94553e62f057dcc00000000"
1826        );
1827        let tx: Result<Transaction, _> = deserialize(&tx_bytes);
1828        assert!(tx.is_ok());
1829        let realtx = tx.unwrap();
1830        // All these tests aren't really needed because if they fail, the hash check at the end
1831        // will also fail. But these will show you where the failure is so I'll leave them in.
1832        assert_eq!(realtx.version, Version::TWO);
1833        assert_eq!(realtx.input.len(), 1);
1834        // In particular this one is easy to get backward -- in bitcoin hashes are encoded
1835        // as little-endian 256-bit numbers rather than as data strings.
1836        assert_eq!(
1837            format!("{:x}", realtx.input[0].previous_output.txid),
1838            "7cac3cf9a112cf04901a51d605058615d56ffe6d04b45270e89d1720ea955859".to_string()
1839        );
1840        assert_eq!(realtx.input[0].previous_output.vout, 1);
1841        assert_eq!(realtx.output.len(), 1);
1842        assert_eq!(realtx.lock_time, absolute::LockTime::ZERO);
1843
1844        assert_eq!(
1845            format!("{:x}", realtx.compute_txid()),
1846            "f5864806e3565c34d1b41e716f72609d00b55ea5eac5b924c9719a842ef42206".to_string()
1847        );
1848        assert_eq!(
1849            format!("{:x}", realtx.compute_wtxid()),
1850            "80b7d8a82d5d5bf92905b06f2014dd699e03837ca172e3a59d51426ebbe3e7f5".to_string()
1851        );
1852        const EXPECTED_WEIGHT: Weight = Weight::from_wu(442);
1853        assert_eq!(realtx.weight(), EXPECTED_WEIGHT);
1854        assert_eq!(realtx.total_size(), tx_bytes.len());
1855        assert_eq!(realtx.vsize(), 111);
1856
1857        let expected_strippedsize = (442 - realtx.total_size()) / 3;
1858        assert_eq!(realtx.base_size(), expected_strippedsize);
1859
1860        // Construct a transaction without the witness data.
1861        let mut tx_without_witness = realtx;
1862        tx_without_witness.input.iter_mut().for_each(|input| input.witness.clear());
1863        assert_eq!(tx_without_witness.total_size(), tx_without_witness.total_size());
1864        assert_eq!(tx_without_witness.total_size(), expected_strippedsize);
1865    }
1866
1867    // We temporarily abuse `Transaction` for testing consensus serde adapter.
1868    #[cfg(feature = "serde")]
1869    #[test]
1870    fn consensus_serde() {
1871        use crate::consensus::serde as con_serde;
1872        let json = "\"010000000001010000000000000000000000000000000000000000000000000000000000000000ffffffff3603da1b0e00045503bd5704c7dd8a0d0ced13bb5785010800000000000a636b706f6f6c122f4e696e6a61506f6f6c2f5345475749542fffffffff02b4e5a212000000001976a914876fbb82ec05caa6af7a3b5e5a983aae6c6cc6d688ac0000000000000000266a24aa21a9edf91c46b49eb8a29089980f02ee6b57e7d63d33b18b4fddac2bcd7db2a39837040120000000000000000000000000000000000000000000000000000000000000000000000000\"";
1873        let mut deserializer = serde_json::Deserializer::from_str(json);
1874        let tx =
1875            con_serde::With::<con_serde::Hex>::deserialize::<'_, Transaction, _>(&mut deserializer)
1876                .unwrap();
1877        let tx_bytes = Vec::from_hex(&json[1..(json.len() - 1)]).unwrap();
1878        let expected = deserialize::<Transaction>(&tx_bytes).unwrap();
1879        assert_eq!(tx, expected);
1880        let mut bytes = Vec::new();
1881        let mut serializer = serde_json::Serializer::new(&mut bytes);
1882        con_serde::With::<con_serde::Hex>::serialize(&tx, &mut serializer).unwrap();
1883        assert_eq!(bytes, json.as_bytes())
1884    }
1885
1886    #[test]
1887    fn transaction_version() {
1888        let tx_bytes = hex!("ffffff7f0100000000000000000000000000000000000000000000000000000000000000000000000000ffffffff0100f2052a01000000434104678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5fac00000000");
1889        let tx: Result<Transaction, _> = deserialize(&tx_bytes);
1890        assert!(tx.is_ok());
1891        let realtx = tx.unwrap();
1892        assert_eq!(realtx.version, Version::non_standard(2147483647));
1893
1894        let tx2_bytes = hex!("000000800100000000000000000000000000000000000000000000000000000000000000000000000000ffffffff0100f2052a01000000434104678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5fac00000000");
1895        let tx2: Result<Transaction, _> = deserialize(&tx2_bytes);
1896        assert!(tx2.is_ok());
1897        let realtx2 = tx2.unwrap();
1898        assert_eq!(realtx2.version, Version::non_standard(-2147483648));
1899    }
1900
1901    #[test]
1902    fn tx_no_input_deserialization() {
1903        let tx_bytes = hex!(
1904            "010000000001000100e1f505000000001976a9140389035a9225b3839e2bbf32d826a1e222031fd888ac00000000"
1905        );
1906        let tx: Transaction = deserialize(&tx_bytes).expect("deserialize tx");
1907
1908        assert_eq!(tx.input.len(), 0);
1909        assert_eq!(tx.output.len(), 1);
1910
1911        let reser = serialize(&tx);
1912        assert_eq!(tx_bytes, reser);
1913    }
1914
1915    #[test]
1916    fn ntxid() {
1917        let tx_bytes = hex!("0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b3839e2bbf32d826a1e222031fd888ac00000000");
1918        let mut tx: Transaction = deserialize(&tx_bytes).unwrap();
1919
1920        let old_ntxid = tx.compute_ntxid();
1921        assert_eq!(
1922            format!("{:x}", old_ntxid),
1923            "c3573dbea28ce24425c59a189391937e00d255150fa973d59d61caf3a06b601d"
1924        );
1925        // changing sigs does not affect it
1926        tx.input[0].script_sig = ScriptBuf::new();
1927        assert_eq!(old_ntxid, tx.compute_ntxid());
1928        // changing pks does
1929        tx.output[0].script_pubkey = ScriptBuf::new();
1930        assert!(old_ntxid != tx.compute_ntxid());
1931    }
1932
1933    #[test]
1934    fn txid() {
1935        // segwit tx from Liquid integration tests, txid/hash from Core decoderawtransaction
1936        let tx_bytes = hex!(
1937            "01000000000102ff34f95a672bb6a4f6ff4a7e90fa8c7b3be7e70ffc39bc99be3bda67942e836c00000000\
1938             23220020cde476664d3fa347b8d54ef3aee33dcb686a65ced2b5207cbf4ec5eda6b9b46e4f414d4c934ad8\
1939             1d330314e888888e3bd22c7dde8aac2ca9227b30d7c40093248af7812201000000232200200af6f6a071a6\
1940             9d5417e592ed99d256ddfd8b3b2238ac73f5da1b06fc0b2e79d54f414d4c0ba0c8f505000000001976a914\
1941             dcb5898d9036afad9209e6ff0086772795b1441088ac033c0f000000000017a914889f8c10ff2bd4bb9dab\
1942             b68c5c0d700a46925e6c87033c0f000000000017a914889f8c10ff2bd4bb9dabb68c5c0d700a46925e6c87\
1943             033c0f000000000017a914889f8c10ff2bd4bb9dabb68c5c0d700a46925e6c87033c0f000000000017a914\
1944             889f8c10ff2bd4bb9dabb68c5c0d700a46925e6c87033c0f000000000017a914889f8c10ff2bd4bb9dabb6\
1945             8c5c0d700a46925e6c87033c0f000000000017a914889f8c10ff2bd4bb9dabb68c5c0d700a46925e6c8703\
1946             3c0f000000000017a914889f8c10ff2bd4bb9dabb68c5c0d700a46925e6c87033c0f000000000017a91488\
1947             9f8c10ff2bd4bb9dabb68c5c0d700a46925e6c87033c0f000000000017a914889f8c10ff2bd4bb9dabb68c\
1948             5c0d700a46925e6c87033c0f000000000017a914889f8c10ff2bd4bb9dabb68c5c0d700a46925e6c870500\
1949             47304402200380b8663e727d7e8d773530ef85d5f82c0b067c97ae927800a0876a1f01d8e2022021ee611e\
1950             f6507dfd217add2cd60a8aea3cbcfec034da0bebf3312d19577b8c290147304402207bd9943ce1c2c5547b\
1951             120683fd05d78d23d73be1a5b5a2074ff586b9c853ed4202202881dcf435088d663c9af7b23efb3c03b9db\
1952             c0c899b247aa94a74d9b4b3c84f501483045022100ba12bba745af3f18f6e56be70f8382ca8e107d1ed5ce\
1953             aa3e8c360d5ecf78886f022069b38ebaac8fe6a6b97b497cbbb115f3176f7213540bef08f9292e5a72de52\
1954             de01695321023c9cd9c6950ffee24772be948a45dc5ef1986271e46b686cb52007bac214395a2102756e27\
1955             cb004af05a6e9faed81fd68ff69959e3c64ac8c9f6cd0e08fd0ad0e75d2103fa40da236bd82202a985a910\
1956             4e851080b5940812685769202a3b43e4a8b13e6a53ae050048304502210098b9687b81d725a7970d1eee91\
1957             ff6b89bc9832c2e0e3fb0d10eec143930b006f02206f77ce19dc58ecbfef9221f81daad90bb4f468df3912\
1958             12abc4f084fe2cc9bdef01483045022100e5479f81a3ad564103da5e2ec8e12f61f3ac8d312ab68763c1dd\
1959             d7bae94c20610220789b81b7220b27b681b1b2e87198897376ba9d033bc387f084c8b8310c8539c2014830\
1960             45022100aa1cc48a2d256c0e556616444cc08ae4959d464e5ffff2ae09e3550bdab6ce9f02207192d5e332\
1961             9a56ba7b1ead724634d104f1c3f8749fe6081e6233aee3e855817a016953210260de9cc68658c61af984e3\
1962             ab0281d17cfca1cc035966d335f474932d5e6c5422210355fbb768ce3ce39360277345dbb5f376e706459e\
1963             5a2b5e0e09a535e61690647021023222ceec58b94bd25925dd9743dae6b928737491bd940fc5dd7c6f5d5f\
1964             2adc1e53ae00000000"
1965        );
1966        let tx: Transaction = deserialize(&tx_bytes).unwrap();
1967
1968        assert_eq!(
1969            format!("{:x}", tx.compute_wtxid()),
1970            "d6ac4a5e61657c4c604dcde855a1db74ec6b3e54f32695d72c5e11c7761ea1b4"
1971        );
1972        assert_eq!(
1973            format!("{:x}", tx.compute_txid()),
1974            "9652aa62b0e748caeec40c4cb7bc17c6792435cc3dfe447dd1ca24f912a1c6ec"
1975        );
1976        assert_eq!(format!("{:.10x}", tx.compute_txid()), "9652aa62b0");
1977        assert_eq!(tx.weight(), Weight::from_wu(2718));
1978
1979        // non-segwit tx from my mempool
1980        let tx_bytes = hex!(
1981            "01000000010c7196428403d8b0c88fcb3ee8d64f56f55c8973c9ab7dd106bb4f3527f5888d000000006a47\
1982             30440220503a696f55f2c00eee2ac5e65b17767cd88ed04866b5637d3c1d5d996a70656d02202c9aff698f\
1983             343abb6d176704beda63fcdec503133ea4f6a5216b7f925fa9910c0121024d89b5a13d6521388969209df2\
1984             7a8469bd565aff10e8d42cef931fad5121bfb8ffffffff02b825b404000000001976a914ef79e7ee9fff98\
1985             bcfd08473d2b76b02a48f8c69088ac0000000000000000296a273236303039343836393731373233313237\
1986             3633313032313332353630353838373931323132373000000000"
1987        );
1988        let tx: Transaction = deserialize(&tx_bytes).unwrap();
1989
1990        assert_eq!(
1991            format!("{:x}", tx.compute_wtxid()),
1992            "971ed48a62c143bbd9c87f4bafa2ef213cfa106c6e140f111931d0be307468dd"
1993        );
1994        assert_eq!(
1995            format!("{:x}", tx.compute_txid()),
1996            "971ed48a62c143bbd9c87f4bafa2ef213cfa106c6e140f111931d0be307468dd"
1997        );
1998    }
1999
2000    #[test]
2001    #[cfg(feature = "serde")]
2002    fn txn_encode_decode() {
2003        let tx_bytes = hex!("0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b3839e2bbf32d826a1e222031fd888ac00000000");
2004        let tx: Transaction = deserialize(&tx_bytes).unwrap();
2005        serde_round_trip!(tx);
2006    }
2007
2008    // Test decoding transaction `4be105f158ea44aec57bf12c5817d073a712ab131df6f37786872cfc70734188`
2009    // from testnet, which is the first BIP144-encoded transaction I encountered.
2010    #[test]
2011    #[cfg(feature = "serde")]
2012    fn segwit_tx_decode() {
2013        let tx_bytes = hex!("010000000001010000000000000000000000000000000000000000000000000000000000000000ffffffff3603da1b0e00045503bd5704c7dd8a0d0ced13bb5785010800000000000a636b706f6f6c122f4e696e6a61506f6f6c2f5345475749542fffffffff02b4e5a212000000001976a914876fbb82ec05caa6af7a3b5e5a983aae6c6cc6d688ac0000000000000000266a24aa21a9edf91c46b49eb8a29089980f02ee6b57e7d63d33b18b4fddac2bcd7db2a39837040120000000000000000000000000000000000000000000000000000000000000000000000000");
2014        let tx: Transaction = deserialize(&tx_bytes).unwrap();
2015        assert_eq!(tx.weight(), Weight::from_wu(780));
2016        serde_round_trip!(tx);
2017
2018        let consensus_encoded = serialize(&tx);
2019        assert_eq!(consensus_encoded, tx_bytes);
2020    }
2021
2022    #[test]
2023    fn sighashtype_fromstr_display() {
2024        let sighashtypes = vec![
2025            ("SIGHASH_ALL", EcdsaSighashType::All),
2026            ("SIGHASH_NONE", EcdsaSighashType::None),
2027            ("SIGHASH_SINGLE", EcdsaSighashType::Single),
2028            ("SIGHASH_ALL|SIGHASH_ANYONECANPAY", EcdsaSighashType::AllPlusAnyoneCanPay),
2029            ("SIGHASH_NONE|SIGHASH_ANYONECANPAY", EcdsaSighashType::NonePlusAnyoneCanPay),
2030            ("SIGHASH_SINGLE|SIGHASH_ANYONECANPAY", EcdsaSighashType::SinglePlusAnyoneCanPay),
2031        ];
2032        for (s, sht) in sighashtypes {
2033            assert_eq!(sht.to_string(), s);
2034            assert_eq!(EcdsaSighashType::from_str(s).unwrap(), sht);
2035        }
2036        let sht_mistakes = vec![
2037            "SIGHASH_ALL | SIGHASH_ANYONECANPAY",
2038            "SIGHASH_NONE |SIGHASH_ANYONECANPAY",
2039            "SIGHASH_SINGLE| SIGHASH_ANYONECANPAY",
2040            "SIGHASH_ALL SIGHASH_ANYONECANPAY",
2041            "SIGHASH_NONE |",
2042            "SIGHASH_SIGNLE",
2043            "sighash_none",
2044            "Sighash_none",
2045            "SigHash_None",
2046            "SigHash_NONE",
2047        ];
2048        for s in sht_mistakes {
2049            assert_eq!(
2050                EcdsaSighashType::from_str(s).unwrap_err().to_string(),
2051                format!("unrecognized SIGHASH string '{}'", s)
2052            );
2053        }
2054    }
2055
2056    #[test]
2057    fn huge_witness() {
2058        deserialize::<Transaction>(&hex!(include_str!("../../tests/data/huge_witness.hex").trim()))
2059            .unwrap();
2060    }
2061
2062    #[test]
2063    #[cfg(feature = "bitcoinconsensus")]
2064    fn transaction_verify() {
2065        use std::collections::HashMap;
2066
2067        use crate::blockdata::witness::Witness;
2068
2069        // a random recent segwit transaction from blockchain using both old and segwit inputs
2070        let mut spending: Transaction = deserialize(hex!("020000000001031cfbc8f54fbfa4a33a30068841371f80dbfe166211242213188428f437445c91000000006a47304402206fbcec8d2d2e740d824d3d36cc345b37d9f65d665a99f5bd5c9e8d42270a03a8022013959632492332200c2908459547bf8dbf97c65ab1a28dec377d6f1d41d3d63e012103d7279dfb90ce17fe139ba60a7c41ddf605b25e1c07a4ddcb9dfef4e7d6710f48feffffff476222484f5e35b3f0e43f65fc76e21d8be7818dd6a989c160b1e5039b7835fc00000000171600140914414d3c94af70ac7e25407b0689e0baa10c77feffffffa83d954a62568bbc99cc644c62eb7383d7c2a2563041a0aeb891a6a4055895570000000017160014795d04cc2d4f31480d9a3710993fbd80d04301dffeffffff06fef72f000000000017a91476fd7035cd26f1a32a5ab979e056713aac25796887a5000f00000000001976a914b8332d502a529571c6af4be66399cd33379071c588ac3fda0500000000001976a914fc1d692f8de10ae33295f090bea5fe49527d975c88ac522e1b00000000001976a914808406b54d1044c429ac54c0e189b0d8061667e088ac6eb68501000000001976a914dfab6085f3a8fb3e6710206a5a959313c5618f4d88acbba20000000000001976a914eb3026552d7e3f3073457d0bee5d4757de48160d88ac0002483045022100bee24b63212939d33d513e767bc79300051f7a0d433c3fcf1e0e3bf03b9eb1d70220588dc45a9ce3a939103b4459ce47500b64e23ab118dfc03c9caa7d6bfc32b9c601210354fd80328da0f9ae6eef2b3a81f74f9a6f66761fadf96f1d1d22b1fd6845876402483045022100e29c7e3a5efc10da6269e5fc20b6a1cb8beb92130cc52c67e46ef40aaa5cac5f0220644dd1b049727d991aece98a105563416e10a5ac4221abac7d16931842d5c322012103960b87412d6e169f30e12106bdf70122aabb9eb61f455518322a18b920a4dfa887d30700")
2071            .as_slice()).unwrap();
2072        let spent1: Transaction = deserialize(hex!("020000000001040aacd2c49f5f3c0968cfa8caf9d5761436d95385252e3abb4de8f5dcf8a582f20000000017160014bcadb2baea98af0d9a902e53a7e9adff43b191e9feffffff96cd3c93cac3db114aafe753122bd7d1afa5aa4155ae04b3256344ecca69d72001000000171600141d9984579ceb5c67ebfbfb47124f056662fe7adbfeffffffc878dd74d3a44072eae6178bb94b9253177db1a5aaa6d068eb0e4db7631762e20000000017160014df2a48cdc53dae1aba7aa71cb1f9de089d75aac3feffffffe49f99275bc8363f5f593f4eec371c51f62c34ff11cc6d8d778787d340d6896c0100000017160014229b3b297a0587e03375ab4174ef56eeb0968735feffffff03360d0f00000000001976a9149f44b06f6ee92ddbc4686f71afe528c09727a5c788ac24281b00000000001976a9140277b4f68ff20307a2a9f9b4487a38b501eb955888ac227c0000000000001976a9148020cd422f55eef8747a9d418f5441030f7c9c7788ac0247304402204aa3bd9682f9a8e101505f6358aacd1749ecf53a62b8370b97d59243b3d6984f02200384ad449870b0e6e89c92505880411285ecd41cf11e7439b973f13bad97e53901210205b392ffcb83124b1c7ce6dd594688198ef600d34500a7f3552d67947bbe392802473044022033dfd8d190a4ae36b9f60999b217c775b96eb10dee3a1ff50fb6a75325719106022005872e4e36d194e49ced2ebcf8bb9d843d842e7b7e0eb042f4028396088d292f012103c9d7cbf369410b090480de2aa15c6c73d91b9ffa7d88b90724614b70be41e98e0247304402207d952de9e59e4684efed069797e3e2d993e9f98ec8a9ccd599de43005fe3f713022076d190cc93d9513fc061b1ba565afac574e02027c9efbfa1d7b71ab8dbb21e0501210313ad44bc030cc6cb111798c2bf3d2139418d751c1e79ec4e837ce360cc03b97a024730440220029e75edb5e9413eb98d684d62a077b17fa5b7cc19349c1e8cc6c4733b7b7452022048d4b9cae594f03741029ff841e35996ef233701c1ea9aa55c301362ea2e2f68012103590657108a72feb8dc1dec022cf6a230bb23dc7aaa52f4032384853b9f8388baf9d20700")
2073            .as_slice()).unwrap();
2074        let spent2: Transaction = deserialize(hex!("0200000000010166c3d39490dc827a2594c7b17b7d37445e1f4b372179649cd2ce4475e3641bbb0100000017160014e69aa750e9bff1aca1e32e57328b641b611fc817fdffffff01e87c5d010000000017a914f3890da1b99e44cd3d52f7bcea6a1351658ea7be87024830450221009eb97597953dc288de30060ba02d4e91b2bde1af2ecf679c7f5ab5989549aa8002202a98f8c3bd1a5a31c0d72950dd6e2e3870c6c5819a6c3db740e91ebbbc5ef4800121023f3d3b8e74b807e32217dea2c75c8d0bd46b8665b3a2d9b3cb310959de52a09bc9d20700")
2075            .as_slice()).unwrap();
2076        let spent3: Transaction = deserialize(hex!("01000000027a1120a30cef95422638e8dab9dedf720ec614b1b21e451a4957a5969afb869d000000006a47304402200ecc318a829a6cad4aa9db152adbf09b0cd2de36f47b53f5dade3bc7ef086ca702205722cda7404edd6012eedd79b2d6f24c0a0c657df1a442d0a2166614fb164a4701210372f4b97b34e9c408741cd1fc97bcc7ffdda6941213ccfde1cb4075c0f17aab06ffffffffc23b43e5a18e5a66087c0d5e64d58e8e21fcf83ce3f5e4f7ecb902b0e80a7fb6010000006b483045022100f10076a0ea4b4cf8816ed27a1065883efca230933bf2ff81d5db6258691ff75202206b001ef87624e76244377f57f0c84bc5127d0dd3f6e0ef28b276f176badb223a01210309a3a61776afd39de4ed29b622cd399d99ecd942909c36a8696cfd22fc5b5a1affffffff0200127a000000000017a914f895e1dd9b29cb228e9b06a15204e3b57feaf7cc8769311d09000000001976a9144d00da12aaa51849d2583ae64525d4a06cd70fde88ac00000000")
2077            .as_slice()).unwrap();
2078
2079        let mut spent = HashMap::new();
2080        spent.insert(spent1.compute_txid(), spent1);
2081        spent.insert(spent2.compute_txid(), spent2);
2082        spent.insert(spent3.compute_txid(), spent3);
2083        let mut spent2 = spent.clone();
2084        let mut spent3 = spent.clone();
2085
2086        spending
2087            .verify(|point: &OutPoint| {
2088                if let Some(tx) = spent.remove(&point.txid) {
2089                    return tx.output.get(point.vout as usize).cloned();
2090                }
2091                None
2092            })
2093            .unwrap();
2094
2095        // test that we fail with repeated use of same input
2096        let mut double_spending = spending.clone();
2097        let re_use = double_spending.input[0].clone();
2098        double_spending.input.push(re_use);
2099
2100        assert!(double_spending
2101            .verify(|point: &OutPoint| {
2102                if let Some(tx) = spent2.remove(&point.txid) {
2103                    return tx.output.get(point.vout as usize).cloned();
2104                }
2105                None
2106            })
2107            .is_err());
2108
2109        // test that we get a failure if we corrupt a signature
2110        let mut witness: Vec<_> = spending.input[1].witness.to_vec();
2111        witness[0][10] = 42;
2112        spending.input[1].witness = Witness::from_slice(&witness);
2113
2114        let error = spending
2115            .verify(|point: &OutPoint| {
2116                if let Some(tx) = spent3.remove(&point.txid) {
2117                    return tx.output.get(point.vout as usize).cloned();
2118                }
2119                None
2120            })
2121            .err()
2122            .unwrap();
2123
2124        match error {
2125            TxVerifyError::ScriptVerification(_) => {}
2126            _ => panic!("Wrong error type"),
2127        }
2128    }
2129
2130    #[test]
2131    fn sequence_number() {
2132        let seq_final = Sequence::from_consensus(0xFFFFFFFF);
2133        let seq_non_rbf = Sequence::from_consensus(0xFFFFFFFE);
2134        let block_time_lock = Sequence::from_consensus(0xFFFF);
2135        let unit_time_lock = Sequence::from_consensus(0x40FFFF);
2136        let lock_time_disabled = Sequence::from_consensus(0x80000000);
2137
2138        assert!(seq_final.is_final());
2139        assert!(!seq_final.is_rbf());
2140        assert!(!seq_final.is_relative_lock_time());
2141        assert!(!seq_non_rbf.is_rbf());
2142        assert!(block_time_lock.is_relative_lock_time());
2143        assert!(block_time_lock.is_height_locked());
2144        assert!(block_time_lock.is_rbf());
2145        assert!(unit_time_lock.is_relative_lock_time());
2146        assert!(unit_time_lock.is_time_locked());
2147        assert!(unit_time_lock.is_rbf());
2148        assert!(!lock_time_disabled.is_relative_lock_time());
2149    }
2150
2151    #[test]
2152    fn sequence_from_hex_lower() {
2153        let sequence = Sequence::from_hex("0xffffffff").unwrap();
2154        assert_eq!(sequence, Sequence::MAX);
2155    }
2156
2157    #[test]
2158    fn sequence_from_hex_upper() {
2159        let sequence = Sequence::from_hex("0XFFFFFFFF").unwrap();
2160        assert_eq!(sequence, Sequence::MAX);
2161    }
2162
2163    #[test]
2164    fn sequence_from_unprefixed_hex_lower() {
2165        let sequence = Sequence::from_unprefixed_hex("ffffffff").unwrap();
2166        assert_eq!(sequence, Sequence::MAX);
2167    }
2168
2169    #[test]
2170    fn sequence_from_unprefixed_hex_upper() {
2171        let sequence = Sequence::from_unprefixed_hex("FFFFFFFF").unwrap();
2172        assert_eq!(sequence, Sequence::MAX);
2173    }
2174
2175    #[test]
2176    fn sequence_from_str_hex_invalid_hex_should_err() {
2177        let hex = "0xzb93";
2178        let result = Sequence::from_hex(hex);
2179        assert!(result.is_err());
2180    }
2181
2182    #[test]
2183    fn effective_value_happy_path() {
2184        let value = Amount::from_str("1 cBTC").unwrap();
2185        let fee_rate = FeeRate::from_sat_per_kwu(10);
2186        let satisfaction_weight = Weight::from_wu(204);
2187        let effective_value = effective_value(fee_rate, satisfaction_weight, value).unwrap();
2188
2189        // 10 sat/kwu * (204wu + BASE_WEIGHT) = 4 sats
2190        let expected_fee = SignedAmount::from_str("4 sats").unwrap();
2191        let expected_effective_value = value.to_signed().unwrap() - expected_fee;
2192        assert_eq!(effective_value, expected_effective_value);
2193    }
2194
2195    #[test]
2196    fn effective_value_fee_rate_does_not_overflow() {
2197        let eff_value = effective_value(FeeRate::MAX, Weight::ZERO, Amount::ZERO);
2198        assert!(eff_value.is_none());
2199    }
2200
2201    #[test]
2202    fn effective_value_weight_does_not_overflow() {
2203        let eff_value = effective_value(FeeRate::ZERO, Weight::MAX, Amount::ZERO);
2204        assert!(eff_value.is_none());
2205    }
2206
2207    #[test]
2208    fn effective_value_value_does_not_overflow() {
2209        let eff_value = effective_value(FeeRate::ZERO, Weight::ZERO, Amount::MAX);
2210        assert!(eff_value.is_none());
2211    }
2212
2213    #[test]
2214    fn txin_txout_weight() {
2215        // [(is_segwit, tx_hex, expected_weight)]
2216        let txs = [
2217                // one segwit input (P2WPKH)
2218                (true, "020000000001018a763b78d3e17acea0625bf9e52b0dc1beb2241b2502185348ba8ff4a253176e0100000000ffffffff0280d725000000000017a914c07ed639bd46bf7087f2ae1dfde63b815a5f8b488767fda20300000000160014869ec8520fa2801c8a01bfdd2e82b19833cd0daf02473044022016243edad96b18c78b545325aaff80131689f681079fb107a67018cb7fb7830e02205520dae761d89728f73f1a7182157f6b5aecf653525855adb7ccb998c8e6143b012103b9489bde92afbcfa85129a82ffa512897105d1a27ad9806bded27e0532fc84e700000000", Weight::from_wu(565)),
2219                // one segwit input (P2WSH)
2220                (true, "01000000000101a3ccad197118a2d4975fadc47b90eacfdeaf8268adfdf10ed3b4c3b7e1ad14530300000000ffffffff0200cc5501000000001976a91428ec6f21f4727bff84bb844e9697366feeb69f4d88aca2a5100d00000000220020701a8d401c84fb13e6baf169d59684e17abd9fa216c8cc5b9fc63d622ff8c58d04004730440220548f11130353b3a8f943d2f14260345fc7c20bde91704c9f1cbb5456355078cd0220383ed4ed39b079b618bcb279bbc1f2ca18cb028c4641cb522c9c5868c52a0dc20147304402203c332ecccb3181ca82c0600520ee51fee80d3b4a6ab110945e59475ec71e44ac0220679a11f3ca9993b04ccebda3c834876f353b065bb08f50076b25f5bb93c72ae1016952210375e00eb72e29da82b89367947f29ef34afb75e8654f6ea368e0acdfd92976b7c2103a1b26313f430c4b15bb1fdce663207659d8cac749a0e53d70eff01874496feff2103c96d495bfdd5ba4145e3e046fee45e84a8a48ad05bd8dbb395c011a32cf9f88053ae00000000", Weight::from_wu(766)),
2221                // one segwit input (P2WPKH) and two legacy inputs (P2PKH)
2222                (true, "010000000001036b6b6ac7e34e97c53c1cc74c99c7948af2e6aac75d8778004ae458d813456764000000006a473044022001deec7d9075109306320b3754188f81a8236d0d232b44bc69f8309115638b8f02204e17a5194a519cf994d0afeea1268740bdc10616b031a521113681cc415e815c012103488d3272a9fad78ee887f0684cb8ebcfc06d0945e1401d002e590c7338b163feffffffffc75bd7aa6424aee972789ec28ba181254ee6d8311b058d165bd045154d7660b0000000006b483045022100c8641bcbee3e4c47a00417875015d8c5d5ea918fb7e96f18c6ffe51bc555b401022074e2c46f5b1109cd79e39a9aa203eadd1d75356415e51d80928a5fb5feb0efee0121033504b4c6dfc3a5daaf7c425aead4c2dbbe4e7387ce8e6be2648805939ecf7054ffffffff494df3b205cd9430a26f8e8c0dc0bb80496fbc555a524d6ea307724bc7e60eee0100000000ffffffff026d861500000000001976a9145c54ed1360072ebaf56e87693b88482d2c6a101588ace407000000000000160014761e31e2629c6e11936f2f9888179d60a5d4c1f900000247304402201fa38a67a63e58b67b6cfffd02f59121ca1c8a1b22e1efe2573ae7e4b4f06c2b022002b9b431b58f6e36b3334fb14eaecee7d2f06967a77ef50d8d5f90dda1057f0c01210257dc6ce3b1100903306f518ee8fa113d778e403f118c080b50ce079fba40e09a00000000", Weight::from_wu(1755)),
2223                // three legacy inputs (P2PKH)
2224                (false, "0100000003e4d7be4314204a239d8e00691128dca7927e19a7339c7948bde56f669d27d797010000006b483045022100b988a858e2982e2daaf0755b37ad46775d6132057934877a5badc91dee2f66ff022020b967c1a2f0916007662ec609987e951baafa6d4fda23faaad70715611d6a2501210254a2dccd8c8832d4677dc6f0e562eaaa5d11feb9f1de2c50a33832e7c6190796ffffffff9e22eb1b3f24c260187d716a8a6c2a7efb5af14a30a4792a6eeac3643172379c000000006a47304402207df07f0cd30dca2cf7bed7686fa78d8a37fe9c2254dfdca2befed54e06b779790220684417b8ff9f0f6b480546a9e90ecee86a625b3ea1e4ca29b080da6bd6c5f67e01210254a2dccd8c8832d4677dc6f0e562eaaa5d11feb9f1de2c50a33832e7c6190796ffffffff1123df3bfb503b59769731da103d4371bc029f57979ebce68067768b958091a1000000006a47304402207a016023c2b0c4db9a7d4f9232fcec2193c2f119a69125ad5bcedcba56dd525e02206a734b3a321286c896759ac98ebfd9d808df47f1ce1fbfbe949891cc3134294701210254a2dccd8c8832d4677dc6f0e562eaaa5d11feb9f1de2c50a33832e7c6190796ffffffff0200c2eb0b000000001976a914e5eb3e05efad136b1405f5c2f9adb14e15a35bb488ac88cfff1b000000001976a9144846db516db3130b7a3c92253599edec6bc9630b88ac00000000", Weight::from_wu(2080)),
2225                // one segwit input (P2TR)
2226                (true, "01000000000101b5cee87f1a60915c38bb0bc26aaf2b67be2b890bbc54bb4be1e40272e0d2fe0b0000000000ffffffff025529000000000000225120106daad8a5cb2e6fc74783714273bad554a148ca2d054e7a19250e9935366f3033760000000000002200205e6d83c44f57484fd2ef2a62b6d36cdcd6b3e06b661e33fd65588a28ad0dbe060141df9d1bfce71f90d68bf9e9461910b3716466bfe035c7dbabaa7791383af6c7ef405a3a1f481488a91d33cd90b098d13cb904323a3e215523aceaa04e1bb35cdb0100000000", Weight::from_wu(617)),
2227                // one legacy input (P2PKH)
2228                (false, "0100000001c336895d9fa674f8b1e294fd006b1ac8266939161600e04788c515089991b50a030000006a47304402204213769e823984b31dcb7104f2c99279e74249eacd4246dabcf2575f85b365aa02200c3ee89c84344ae326b637101a92448664a8d39a009c8ad5d147c752cbe112970121028b1b44b4903c9103c07d5a23e3c7cf7aeb0ba45ddbd2cfdce469ab197381f195fdffffff040000000000000000536a4c5058325bb7b7251cf9e36cac35d691bd37431eeea426d42cbdecca4db20794f9a4030e6cb5211fabf887642bcad98c9994430facb712da8ae5e12c9ae5ff314127d33665000bb26c0067000bb0bf00322a50c300000000000017a9145ca04fdc0a6d2f4e3f67cfeb97e438bb6287725f8750c30000000000001976a91423086a767de0143523e818d4273ddfe6d9e4bbcc88acc8465003000000001976a914c95cbacc416f757c65c942f9b6b8a20038b9b12988ac00000000", Weight::from_wu(1396)),
2229            ];
2230
2231        let empty_transaction_weight = Transaction {
2232            version: Version::TWO,
2233            lock_time: absolute::LockTime::ZERO,
2234            input: vec![],
2235            output: vec![],
2236        }
2237        .weight();
2238
2239        for (is_segwit, tx, expected_weight) in &txs {
2240            let txin_weight = if *is_segwit { TxIn::segwit_weight } else { TxIn::legacy_weight };
2241            let tx: Transaction = deserialize(Vec::from_hex(tx).unwrap().as_slice()).unwrap();
2242            assert_eq!(*is_segwit, tx.uses_segwit_serialization());
2243
2244            let mut calculated_weight = empty_transaction_weight
2245                + tx.input.iter().fold(Weight::ZERO, |sum, i| sum + txin_weight(i))
2246                + tx.output.iter().fold(Weight::ZERO, |sum, o| sum + o.weight());
2247
2248            // The empty tx uses segwit serialization but a legacy tx does not.
2249            if !tx.uses_segwit_serialization() {
2250                calculated_weight -= Weight::from_wu(2);
2251            }
2252
2253            assert_eq!(calculated_weight, *expected_weight);
2254            assert_eq!(tx.weight(), *expected_weight);
2255        }
2256    }
2257
2258    #[test]
2259    fn tx_sigop_count() {
2260        let tx_hexes = [
2261            // 0 sigops (p2pkh in + p2wpkh out)
2262            (
2263                "0200000001725aab4d23f76ad10bb569a68f8702ebfb8b076e015179ff9b9425234953\
2264                ac63000000006a47304402204cae7dc9bb68b588dd6b8afb8b881b752fd65178c25693e\
2265                a6d5d9a08388fd2a2022011c753d522d5c327741a6d922342c86e05c928309d7e566f68\
2266                8148432e887028012103f14b11cfb58b113716e0fa277ab4a32e4d3ed64c6b09b1747ef\
2267                7c828d5b06a94fdffffff01e5d4830100000000160014e98527b55cae861e5b9c3a6794\
2268                86514c012d6fce00000000",
2269                0,                                             // Expected (Some)
2270                return_none as fn(&OutPoint) -> Option<TxOut>, // spent fn
2271                0,                                             // Expected (None)
2272            ),
2273            // 5 sigops (p2wpkh in + p2pkh out (x4))
2274            (
2275                "020000000001018c47330b1c4d30e7e2244e8ccb56d411b71e10073bb42fa1813f3f01\
2276                e144cc4d0100000000fdffffff01f7e30300000000001976a9143b49fd16f7562cfeedc\
2277                6a4ba84805f8c2f8e1a2c88ac024830450221009a4dbf077a63f6e4c3628a5fef2a09ec\
2278                6f7ca4a4d95bc8bb69195b6b671e9272022074da9ffff5a677fc7b37d66bb4ff1f316c9\
2279                dbacb92058291d84cd4b83f7c63c9012103d013e9e53c9ca8dd2ddffab1e9df27811503\
2280                feea7eb0700ff058851bbb37d99000000000",
2281                5,
2282                return_p2wpkh,
2283                4,
2284            ),
2285            // 8 sigops (P2WSH 3-of-4 MS (4) in + P2WSH out + P2PKH out (1x4))
2286            (
2287                "01000000000101e70d7b4d957122909a665070b0c5bbb693982d09e4e66b9e6b7a8390\
2288                ce65ef1f0100000000ffffffff02095f2b0000000000220020800a016ea57a08f30c273\
2289                ae7624f8f91c505ccbd3043829349533f317168248c52594500000000001976a914607f\
2290                643372477c044c6d40b814288e40832a602688ac05004730440220282943649e687b5a3\
2291                bda9403c16f363c2ee2be0ec43fb8df40a08b96a4367d47022014e8f36938eef41a09ee\
2292                d77a815b0fa120a35f25e3a185310f050959420cee360147304402201e555f894036dd5\
2293                78045701e03bf10e093d7e93cd9997e44c1fc65a7b669852302206893f7261e52c9d779\
2294                5ba39d99aad30663da43ed675c389542805469fa8eb26a014730440220510fc99bc37d6\
2295                dbfa7e8724f4802cebdb17b012aaf70ce625e22e6158b139f40022022e9b811751d491f\
2296                bdec7691b697e88ba84315f6739b9e3bd4425ac40563aed2018b5321029ddecf0cc2013\
2297                514961550e981a0b8b60e7952f70561a5bb552aa7f075e71e3c2103316195a59c35a3b2\
2298                7b6dfcc3192cc10a7a6bbccd5658dfbe98ca62a13d6a02c121034629d906165742def4e\
2299                f53c6dade5dcbf88b775774cad151e35ae8285e613b0221035826a29938de2076950811\
2300                13c58bcf61fe6adacc3aacceb21c4827765781572d54ae00000000",
2301                8,
2302                return_p2wsh,
2303                4,
2304            ),
2305            // 5 sigops (P2SH-P2WPKH in (1), 2 P2SH outs (0), 1 P2PKH out (1x4))
2306            (
2307                "010000000001018aec7e0729ba5a2d284303c89b3f397e92d54472a225d28eb0ae2fa6\
2308                5a7d1a2e02000000171600145ad5db65f313ab76726eb178c2fd8f21f977838dfdfffff\
2309                f03102700000000000017a914dca89e03ba124c2c70e55533f91100f2d9dab04587f2d7\
2310                1d00000000001976a91442a34f4b0a65bc81278b665d37fd15910d261ec588ac292c3b0\
2311                00000000017a91461978dcebd0db2da0235c1ba3e8087f9fd74c57f8702473044022000\
2312                9226f8def30a8ffa53e55ca5d71a72a64cd20ae7f3112562e3413bd0731d2c0220360d2\
2313                20435e67eef7f2bf0258d1dded706e3824f06d961ba9eeaed300b16c2cc012103180cff\
2314                753d3e4ee1aa72b2b0fd72ce75956d04f4c19400a3daed0b18c3ab831e00000000",
2315                5,
2316                return_p2sh,
2317                4,
2318            ),
2319            // 12 sigops (1 P2SH 2-of-3 MS in (3x4), P2SH outs (0))
2320            (
2321                "010000000115fe9ec3dc964e41f5267ea26cfe505f202bf3b292627496b04bece84da9\
2322                b18903000000fc004730440220442827f1085364bda58c5884cee7b289934083362db6d\
2323                fb627dc46f6cdbf5793022078cfa524252c381f2a572f0c41486e2838ca94aa268f2384\
2324                d0e515744bf0e1e9014730440220160e49536bb29a49c7626744ee83150174c22fa40d5\
2325                8fb4cd554a907a6a7b825022045f6cf148504b334064686795f0968c689e542f475b8ef\
2326                5a5fa42383948226a3014c69522103e54bc61efbcb8eeff3a5ab2a92a75272f5f6820e3\
2327                8e3d28edb54beb06b86c0862103a553e30733d7a8df6d390d59cc136e2c9d9cf4e808f3\
2328                b6ab009beae68dd60822210291c5a54bb8b00b6f72b90af0ac0ecaf78fab026d8eded28\
2329                2ad95d4d65db268c953aeffffffff024c4f0d000000000017a9146ebf0484bd5053f727\
2330                c755a750aa4c815dfa112887a06b12020000000017a91410065dd50b3a7f299fef3b1c5\
2331                3b8216399916ab08700000000",
2332                12,
2333                return_p2sh,
2334                0,
2335            ),
2336            // 3 sigops (1 P2SH-P2WSH 2-of-3 MS in (3), P2SH + P2WSH outs (0))
2337            (
2338                "0100000000010117a31277a8ba3957be351fe4cffd080e05e07f9ee1594d638f55dd7d\
2339                707a983c01000000232200203a33fc9628c29f36a492d9fd811fd20231fbd563f7863e7\
2340                9c4dc0ed34ea84b15ffffffff033bed03000000000017a914fb00d9a49663fd8ae84339\
2341                8ae81299a1941fb8d287429404000000000017a9148fe08d81882a339cf913281eca8af\
2342                39110507c798751ab1300000000002200208819e4bac0109b659de6b9168b83238a050b\
2343                ef16278e470083b39d28d2aa5a6904004830450221009faf81f72ec9b14a39f0f0e12f0\
2344                1a7175a4fe3239cd9a015ff2085985a9b0e3f022059e1aaf96c9282298bdc9968a46d8a\
2345                d28e7299799835cf982b02c35e217caeae0147304402202b1875355ee751e0c8b21990b\
2346                7ea73bd84dfd3bd17477b40fc96552acba306ad02204913bc43acf02821a3403132aa0c\
2347                33ac1c018d64a119f6cb55dfb8f408d997ef01695221023c15bf3436c0b4089e0ed0428\
2348                5101983199d0967bd6682d278821c1e2ac3583621034d924ccabac6d190ce8343829834\
2349                cac737aa65a9abe521bcccdcc3882d97481f21035d01d092bb0ebcb793ba3ffa0aeb143\
2350                2868f5277d5d3d2a7d2bc1359ec13abbd53aee1560c00",
2351                3,
2352                return_p2sh,
2353                0,
2354            ),
2355            // 80 sigops (1 P2PKH ins (0), 1 BARE MS outs (20x4))
2356            (
2357                "0100000001628c1726fecd23331ae9ff2872341b82d2c03180aa64f9bceefe457448db\
2358                e579020000006a47304402204799581a5b34ae5adca21ef22c55dbfcee58527127c95d0\
2359                1413820fe7556ed970220391565b24dc47ce57fe56bf029792f821a392cdb5a3d45ed85\
2360                c158997e7421390121037b2fb5b602e51c493acf4bf2d2423bcf63a09b3b99dfb7bd3c8\
2361                d74733b5d66f5ffffffff011c0300000000000069512103a29472a1848105b2225f0eca\
2362                5c35ada0b0abbc3c538818a53eca177f4f4dcd9621020c8fd41b65ae6b980c072c5a9f3\
2363                aec9f82162c92eb4c51d914348f4390ac39122102222222222222222222222222222222\
2364                222222222222222222222222222222222253ae00000000",
2365                80,
2366                return_none,
2367                80,
2368            ),
2369        ];
2370
2371        // All we need is to trigger 3 cases for prevout
2372        fn return_p2sh(_outpoint: &OutPoint) -> Option<TxOut> {
2373            Some(
2374                deserialize(&hex!(
2375                    "cc721b000000000017a91428203c10cc8f18a77412caaa83dabaf62b8fbb0f87"
2376                ))
2377                .unwrap(),
2378            )
2379        }
2380        fn return_p2wpkh(_outpoint: &OutPoint) -> Option<TxOut> {
2381            Some(
2382                deserialize(&hex!(
2383                    "e695779d000000001600141c6977423aa4b82a0d7f8496cdf3fc2f8b4f580c"
2384                ))
2385                .unwrap(),
2386            )
2387        }
2388        fn return_p2wsh(_outpoint: &OutPoint) -> Option<TxOut> {
2389            Some(
2390                deserialize(&hex!(
2391                    "66b51e0900000000220020dbd6c9d5141617eff823176aa226eb69153c1e31334ac37469251a2539fc5c2b"
2392                ))
2393                .unwrap(),
2394            )
2395        }
2396        fn return_none(_outpoint: &OutPoint) -> Option<TxOut> { None }
2397
2398        for (hx, expected, spent_fn, expected_none) in tx_hexes.iter() {
2399            let tx_bytes = hex!(hx);
2400            let tx: Transaction = deserialize(&tx_bytes).unwrap();
2401            assert_eq!(tx.total_sigop_cost(spent_fn), *expected);
2402            assert_eq!(tx.total_sigop_cost(return_none), *expected_none);
2403        }
2404    }
2405
2406    #[test]
2407    fn weight_predictions() {
2408        // TXID 3d3381f968e3a73841cba5e73bf47dcea9f25a9f7663c51c81f1db8229a309a0
2409        let tx_raw = hex!(
2410            "01000000000103fc9aa70afba04da865f9821734b556cca9fb5710\
2411             fc1338b97fba811033f755e308000000000000000019b37457784d\
2412             d04936f011f733b8016c247a9ef08d40007a54a5159d1fc62ee216\
2413             00000000000000004c4f2937c6ccf8256d9711a19df1ae62172297\
2414             0bf46be925ff15f490efa1633d01000000000000000002c0e1e400\
2415             0000000017a9146983f776902c1d1d0355ae0962cb7bc69e9afbde\
2416             8706a1e600000000001600144257782711458506b89f255202d645\
2417             e25c41144702483045022100dcada0499865a49d0aab8cb113c5f8\
2418             3fd5a97abc793f97f3f53aa4b9d1192ed702202094c7934666a30d\
2419             6adb1cc9e3b6bc14d2ffebd3200f3908c40053ef2df640b5012103\
2420             15434bb59b615a383ae87316e784fc11835bb97fab33fdd2578025\
2421             e9968d516e0247304402201d90b3197650569eba4bc0e0b1e2dca7\
2422             7dfac7b80d4366f335b67e92e0546e4402203b4be1d443ad7e3a5e\
2423             a92aafbcdc027bf9ccf5fe68c0bc8f3ebb6ab806c5464c012103e0\
2424             0d92b0fe60731a54fdbcc6920934159db8ffd69d55564579b69a22\
2425             ec5bb7530247304402205ab83b734df818e64d8b9e86a8a75f9d00\
2426             5c0c6e1b988d045604853ab9ccbde002205a580235841df609d6bd\
2427             67534bdcd301999b18e74e197e9e476cdef5fdcbf822012102ebb3\
2428             e8a4638ede4721fb98e44e3a3cd61fecfe744461b85e0b6a6a1017\
2429             5d5aca00000000"
2430        );
2431
2432        let tx = Transaction::consensus_decode::<&[u8]>(&mut tx_raw.as_ref()).unwrap();
2433        let input_weights = vec![
2434            InputWeightPrediction::P2WPKH_MAX,
2435            InputWeightPrediction::ground_p2wpkh(1),
2436            InputWeightPrediction::ground_p2wpkh(1),
2437        ];
2438        // Outputs: [P2SH, P2WPKH]
2439
2440        // Confirm the transaction's predicted weight matches its actual weight.
2441        let predicted = predict_weight(input_weights, tx.script_pubkey_lens());
2442        let expected = tx.weight();
2443        assert_eq!(predicted, expected);
2444
2445        // Confirm signature grinding input weight predictions are aligned with constants.
2446        assert_eq!(
2447            InputWeightPrediction::ground_p2wpkh(0).weight(),
2448            InputWeightPrediction::P2WPKH_MAX.weight()
2449        );
2450        assert_eq!(
2451            InputWeightPrediction::ground_p2pkh_compressed(0).weight(),
2452            InputWeightPrediction::P2PKH_COMPRESSED_MAX.weight()
2453        );
2454    }
2455
2456    #[test]
2457    fn sequence_debug_output() {
2458        let seq = Sequence::from_seconds_floor(1000);
2459        println!("{:?}", seq)
2460    }
2461
2462    #[test]
2463    fn outpoint_format() {
2464        let outpoint = OutPoint::default();
2465
2466        let debug = "OutPoint { txid: 0000000000000000000000000000000000000000000000000000000000000000, vout: 4294967295 }";
2467        assert_eq!(debug, format!("{:?}", &outpoint));
2468
2469        let display = "0000000000000000000000000000000000000000000000000000000000000000:4294967295";
2470        assert_eq!(display, format!("{}", &outpoint));
2471
2472        let pretty_debug = "OutPoint {\n    txid: 0000000000000000000000000000000000000000000000000000000000000000,\n    vout: 4294967295,\n}";
2473        assert_eq!(pretty_debug, format!("{:#?}", &outpoint));
2474
2475        let debug_txid = "0000000000000000000000000000000000000000000000000000000000000000";
2476        assert_eq!(debug_txid, format!("{:?}", &outpoint.txid));
2477
2478        let display_txid = "0000000000000000000000000000000000000000000000000000000000000000";
2479        assert_eq!(display_txid, format!("{}", &outpoint.txid));
2480
2481        let pretty_txid = "0x0000000000000000000000000000000000000000000000000000000000000000";
2482        assert_eq!(pretty_txid, format!("{:#}", &outpoint.txid));
2483    }
2484}
2485
2486#[cfg(bench)]
2487mod benches {
2488    use hex_lit::hex;
2489    use io::sink;
2490    use test::{black_box, Bencher};
2491
2492    use super::Transaction;
2493    use crate::consensus::{deserialize, Encodable};
2494
2495    const SOME_TX: &str = "0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b3839e2bbf32d826a1e222031fd888ac00000000";
2496
2497    #[bench]
2498    pub fn bench_transaction_size(bh: &mut Bencher) {
2499        let raw_tx = hex!(SOME_TX);
2500
2501        let mut tx: Transaction = deserialize(&raw_tx).unwrap();
2502
2503        bh.iter(|| {
2504            black_box(black_box(&mut tx).total_size());
2505        });
2506    }
2507
2508    #[bench]
2509    pub fn bench_transaction_serialize(bh: &mut Bencher) {
2510        let raw_tx = hex!(SOME_TX);
2511        let tx: Transaction = deserialize(&raw_tx).unwrap();
2512
2513        let mut data = Vec::with_capacity(raw_tx.len());
2514
2515        bh.iter(|| {
2516            let result = tx.consensus_encode(&mut data);
2517            black_box(&result);
2518            data.clear();
2519        });
2520    }
2521
2522    #[bench]
2523    pub fn bench_transaction_serialize_logic(bh: &mut Bencher) {
2524        let raw_tx = hex!(SOME_TX);
2525        let tx: Transaction = deserialize(&raw_tx).unwrap();
2526
2527        bh.iter(|| {
2528            let size = tx.consensus_encode(&mut sink());
2529            black_box(&size);
2530        });
2531    }
2532
2533    #[bench]
2534    pub fn bench_transaction_deserialize(bh: &mut Bencher) {
2535        let raw_tx = hex!(SOME_TX);
2536
2537        bh.iter(|| {
2538            let tx: Transaction = deserialize(&raw_tx).unwrap();
2539            black_box(&tx);
2540        });
2541    }
2542}