1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Rust Bitcoin Library
// Written in 2014 by
//     Andrew Poelstra <apoelstra@wpsoftware.net>
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! Bitcoin Keys
//!
//! Keys used in Bitcoin that can be roundtrip (de)serialized.
//!

use std::fmt::{self, Write};
use std::{io, ops};
use std::str::FromStr;
use secp256k1::{self, Secp256k1};
use consensus::encode;
use network::constants::Network;
use util::base58;

/// A Bitcoin ECDSA public key
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PublicKey {
    /// Whether this public key should be serialized as compressed
    pub compressed: bool,
    /// The actual ECDSA key
    pub key: secp256k1::PublicKey,
}

impl PublicKey {
    /// Write the public key into a writer
    pub fn write_into<W: io::Write>(&self, mut writer: W) {
        let write_res: io::Result<()> = if self.compressed {
            writer.write_all(&self.key.serialize())
        } else {
            writer.write_all(&self.key.serialize_uncompressed())
        };
        debug_assert!(write_res.is_ok());
    }

    /// Deserialize a public key from a slice
    pub fn from_slice(data: &[u8]) -> Result<PublicKey, encode::Error> {
        let compressed: bool = match data.len() {
            33 => true,
            65 => false,
            len =>  { return Err(base58::Error::InvalidLength(len).into()); },
        };

        Ok(PublicKey {
            compressed: compressed,
            key: secp256k1::PublicKey::from_slice(data)?,
        })
    }

    /// Computes the public key as supposed to be used with this secret
    pub fn from_private_key<C: secp256k1::Signing>(secp: &Secp256k1<C>, sk: &PrivateKey) -> PublicKey {
        sk.public_key(secp)
    }
}

#[derive(Copy, Clone, PartialEq, Eq)]
/// A Bitcoin ECDSA private key
pub struct PrivateKey {
    /// Whether this private key should be serialized as compressed
    pub compressed: bool,
    /// The network on which this key should be used
    pub network: Network,
    /// The actual ECDSA key
    pub key: secp256k1::SecretKey,
}

impl PrivateKey {
    /// Creates a public key from this private key
    pub fn public_key<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> PublicKey {
        PublicKey {
            compressed: self.compressed,
            key: secp256k1::PublicKey::from_secret_key(secp, &self.key)
        }
    }

    /// Format the private key to WIF format.
    pub fn fmt_wif(&self, fmt: &mut fmt::Write) -> fmt::Result {
        let mut ret = [0; 34];
        ret[0] = match self.network {
            Network::Bitcoin => 128,
            Network::Testnet | Network::Regtest => 239,
        };
        ret[1..33].copy_from_slice(&self.key[..]);
        let privkey = if self.compressed {
            ret[33] = 1;
            base58::check_encode_slice(&ret[..])
        } else {
            base58::check_encode_slice(&ret[..33])
        };
        fmt.write_str(&privkey)
    }

    /// Get WIF encoding of this private key.
    pub fn to_wif(&self) -> String {
        let mut buf = String::new();
        buf.write_fmt(format_args!("{}", self)).unwrap();
        buf.shrink_to_fit();
        buf
    }

    /// Parse WIF encoded private key.
    pub fn from_wif(wif: &str) -> Result<PrivateKey, encode::Error> {
        let data = base58::from_check(wif)?;

        let compressed = match data.len() {
            33 => false,
            34 => true,
            _ => { return Err(encode::Error::Base58(base58::Error::InvalidLength(data.len()))); }
        };

        let network = match data[0] {
            128 => Network::Bitcoin,
            239 => Network::Testnet,
            x   => { return Err(encode::Error::Base58(base58::Error::InvalidVersion(vec![x]))); }
        };

        Ok(PrivateKey {
            compressed: compressed,
            network: network,
            key: secp256k1::SecretKey::from_slice(&data[1..33])?,
        })
    }
}

impl fmt::Display for PrivateKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.fmt_wif(f)
    }
}

impl fmt::Debug for PrivateKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "[private key data]")
    }
}

impl FromStr for PrivateKey {
    type Err = encode::Error;
    fn from_str(s: &str) -> Result<PrivateKey, encode::Error> {
        PrivateKey::from_wif(s)
    }
}

impl ops::Index<ops::RangeFull> for PrivateKey {
    type Output = [u8];
    fn index(&self, _: ops::RangeFull) -> &[u8] {
        &self.key[..]
    }
}

#[cfg(test)]
mod tests {
    use super::PrivateKey;
    use secp256k1::Secp256k1;
    use std::str::FromStr;
    use network::constants::Network::Testnet;
    use network::constants::Network::Bitcoin;
    use util::address::Address;

    #[test]
    fn test_key_derivation() {
        // testnet compressed
        let sk = PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
        assert_eq!(sk.network, Testnet);
        assert_eq!(sk.compressed, true);
        assert_eq!(&sk.to_wif(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");

        let secp = Secp256k1::new();
        let pk = Address::p2pkh(&sk.public_key(&secp), sk.network);
        assert_eq!(&pk.to_string(), "mqwpxxvfv3QbM8PU8uBx2jaNt9btQqvQNx");

        // test string conversion
        assert_eq!(&sk.to_string(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
        let sk_str =
            PrivateKey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
        assert_eq!(&sk.to_wif(), &sk_str.to_wif());

        // mainnet uncompressed
        let sk = PrivateKey::from_wif("5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3").unwrap();
        assert_eq!(sk.network, Bitcoin);
        assert_eq!(sk.compressed, false);
        assert_eq!(&sk.to_wif(), "5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3");

        let secp = Secp256k1::new();
        let pk = Address::p2pkh(&sk.public_key(&secp), sk.network);
        assert_eq!(&pk.to_string(), "1GhQvF6dL8xa6wBxLnWmHcQsurx9RxiMc8");
    }
}