1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
crate::ix!();

/**
  | RAII class that provides access to a
  | WalletDatabase
  |
  */
pub struct SQLiteBatch<'a> {
    base:           DatabaseBatch,
    database:       Rc<RefCell<sqlite3::Connection>>,
    cursor_init:    bool, // default = false
    read_stmt:      *mut SQLite3Stmt<'a>, // default = { nullptr }
    insert_stmt:    *mut SQLite3Stmt<'a>, // default = { nullptr }
    overwrite_stmt: *mut SQLite3Stmt<'a>, // default = { nullptr }
    delete_stmt:    *mut SQLite3Stmt<'a>, // default = { nullptr }
    cursor_stmt:    *mut SQLite3Stmt<'a>, // default = { nullptr }
}

pub type SQLite3Stmt<'a> = sqlite3::Statement<'a>;

impl<'a> Drop for SQLiteBatch<'a> {

    fn drop(&mut self) {
        todo!();
        /*
            Close();
        */
    }
}

impl<'a> SQLiteBatch<'a> {
    
    pub fn new(database: &mut sqlite::Connection) -> Self {
    
        todo!();
        /*
        : database(database),

            // Make sure we have a db handle
        assert(m_database.m_db);

        SetupSQLStatements();
        */
    }
    
    pub fn close(&mut self)  {
        
        todo!();
        /*
            // If m_db is in a transaction (i.e. not in autocommit mode), then abort the transaction in progress
        if (m_database.m_db && sqlite3_get_autocommit(m_database.m_db) == 0) {
            if (TxnAbort()) {
                LogPrintf("SQLiteBatch: Batch closed unexpectedly without the transaction being explicitly committed or aborted\n");
            } else {
                LogPrintf("SQLiteBatch: Batch closed and failed to abort transaction\n");
            }
        }

        // Free all of the prepared statements
        const std::vector<std::pair<sqlite3_stmt**, const char*>> statements{
            {&m_read_stmt, "read"},
            {&m_insert_stmt, "insert"},
            {&m_overwrite_stmt, "overwrite"},
            {&m_delete_stmt, "delete"},
            {&m_cursor_stmt, "cursor"},
        };

        for (const auto& [stmt_prepared, stmt_description] : statements) {
            int res = sqlite3_finalize(*stmt_prepared);
            if (res != SQLITE_OK) {
                LogPrintf("SQLiteBatch: Batch closed but could not finalize %s statement: %s\n",
                          stmt_description, sqlite3_errstr(res));
            }
            *stmt_prepared = nullptr;
        }
        */
    }
    
    pub fn read_key(&mut self, 
        key:   DataStream,
        value: &mut DataStream) -> bool {
        
        todo!();
        /*
            if (!m_database.m_db) return false;
        assert(m_read_stmt);

        // Bind: leftmost parameter in statement is index 1
        int res = sqlite3_bind_blob(m_read_stmt, 1, key.data(), key.size(), SQLITE_STATIC);
        if (res != SQLITE_OK) {
            LogPrintf("%s: Unable to bind statement: %s\n", __func__, sqlite3_errstr(res));
            sqlite3_clear_bindings(m_read_stmt);
            sqlite3_reset(m_read_stmt);
            return false;
        }
        res = sqlite3_step(m_read_stmt);
        if (res != SQLITE_ROW) {
            if (res != SQLITE_DONE) {
                // SQLITE_DONE means "not found", don't log an error in that case.
                LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res));
            }
            sqlite3_clear_bindings(m_read_stmt);
            sqlite3_reset(m_read_stmt);
            return false;
        }
        // Leftmost column in result is index 0
        const char* data = reinterpret_cast<const char*>(sqlite3_column_blob(m_read_stmt, 0));
        int data_size = sqlite3_column_bytes(m_read_stmt, 0);
        value.write(data, data_size);

        sqlite3_clear_bindings(m_read_stmt);
        sqlite3_reset(m_read_stmt);
        return true;
        */
    }
    
    pub fn write_key(&mut self, 
        key:       DataStream,
        value:     DataStream,
        overwrite: Option<bool>) -> bool {

        let overwrite: bool = overwrite.unwrap_or(true);
        
        todo!();
        /*
            if (!m_database.m_db) return false;
        assert(m_insert_stmt && m_overwrite_stmt);

        sqlite3_stmt* stmt;
        if (overwrite) {
            stmt = m_overwrite_stmt;
        } else {
            stmt = m_insert_stmt;
        }

        // Bind: leftmost parameter in statement is index 1
        // Insert index 1 is key, 2 is value
        int res = sqlite3_bind_blob(stmt, 1, key.data(), key.size(), SQLITE_STATIC);
        if (res != SQLITE_OK) {
            LogPrintf("%s: Unable to bind key to statement: %s\n", __func__, sqlite3_errstr(res));
            sqlite3_clear_bindings(stmt);
            sqlite3_reset(stmt);
            return false;
        }
        res = sqlite3_bind_blob(stmt, 2, value.data(), value.size(), SQLITE_STATIC);
        if (res != SQLITE_OK) {
            LogPrintf("%s: Unable to bind value to statement: %s\n", __func__, sqlite3_errstr(res));
            sqlite3_clear_bindings(stmt);
            sqlite3_reset(stmt);
            return false;
        }

        // Execute
        res = sqlite3_step(stmt);
        sqlite3_clear_bindings(stmt);
        sqlite3_reset(stmt);
        if (res != SQLITE_DONE) {
            LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res));
        }
        return res == SQLITE_DONE;
        */
    }
    
    pub fn erase_key(&mut self, key: DataStream) -> bool {
        
        todo!();
        /*
            if (!m_database.m_db) return false;
        assert(m_delete_stmt);

        // Bind: leftmost parameter in statement is index 1
        int res = sqlite3_bind_blob(m_delete_stmt, 1, key.data(), key.size(), SQLITE_STATIC);
        if (res != SQLITE_OK) {
            LogPrintf("%s: Unable to bind statement: %s\n", __func__, sqlite3_errstr(res));
            sqlite3_clear_bindings(m_delete_stmt);
            sqlite3_reset(m_delete_stmt);
            return false;
        }

        // Execute
        res = sqlite3_step(m_delete_stmt);
        sqlite3_clear_bindings(m_delete_stmt);
        sqlite3_reset(m_delete_stmt);
        if (res != SQLITE_DONE) {
            LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res));
        }
        return res == SQLITE_DONE;
        */
    }
    
    pub fn has_key(&mut self, key: DataStream) -> bool {
        
        todo!();
        /*
            if (!m_database.m_db) return false;
        assert(m_read_stmt);

        // Bind: leftmost parameter in statement is index 1
        bool ret = false;
        int res = sqlite3_bind_blob(m_read_stmt, 1, key.data(), key.size(), SQLITE_STATIC);
        if (res == SQLITE_OK) {
            res = sqlite3_step(m_read_stmt);
            if (res == SQLITE_ROW) {
                ret = true;
            }
        }

        sqlite3_clear_bindings(m_read_stmt);
        sqlite3_reset(m_read_stmt);
        return ret;
        */
    }
    
    pub fn start_cursor(&mut self) -> bool {
        
        todo!();
        /*
            assert(!m_cursor_init);
        if (!m_database.m_db) return false;
        m_cursor_init = true;
        return true;
        */
    }
    
    pub fn read_at_cursor(&mut self, 
        key:      &mut DataStream,
        value:    &mut DataStream,
        complete: &mut bool) -> bool {
        
        todo!();
        /*
            complete = false;

        if (!m_cursor_init) return false;

        int res = sqlite3_step(m_cursor_stmt);
        if (res == SQLITE_DONE) {
            complete = true;
            return true;
        }
        if (res != SQLITE_ROW) {
            LogPrintf("SQLiteBatch::ReadAtCursor: Unable to execute cursor step: %s\n", sqlite3_errstr(res));
            return false;
        }

        // Leftmost column in result is index 0
        const char* key_data = reinterpret_cast<const char*>(sqlite3_column_blob(m_cursor_stmt, 0));
        int key_data_size = sqlite3_column_bytes(m_cursor_stmt, 0);
        key.write(key_data, key_data_size);
        const char* value_data = reinterpret_cast<const char*>(sqlite3_column_blob(m_cursor_stmt, 1));
        int value_data_size = sqlite3_column_bytes(m_cursor_stmt, 1);
        value.write(value_data, value_data_size);
        return true;
        */
    }
    
    pub fn close_cursor(&mut self)  {
        
        todo!();
        /*
            sqlite3_reset(m_cursor_stmt);
        m_cursor_init = false;
        */
    }
    
    pub fn txn_begin(&mut self) -> bool {
        
        todo!();
        /*
            if (!m_database.m_db || sqlite3_get_autocommit(m_database.m_db) == 0) return false;
        int res = sqlite3_exec(m_database.m_db, "BEGIN TRANSACTION", nullptr, nullptr, nullptr);
        if (res != SQLITE_OK) {
            LogPrintf("SQLiteBatch: Failed to begin the transaction\n");
        }
        return res == SQLITE_OK;
        */
    }
    
    pub fn txn_commit(&mut self) -> bool {
        
        todo!();
        /*
            if (!m_database.m_db || sqlite3_get_autocommit(m_database.m_db) != 0) return false;
        int res = sqlite3_exec(m_database.m_db, "COMMIT TRANSACTION", nullptr, nullptr, nullptr);
        if (res != SQLITE_OK) {
            LogPrintf("SQLiteBatch: Failed to commit the transaction\n");
        }
        return res == SQLITE_OK;
        */
    }
    
    pub fn txn_abort(&mut self) -> bool {
        
        todo!();
        /*
            if (!m_database.m_db || sqlite3_get_autocommit(m_database.m_db) != 0) return false;
        int res = sqlite3_exec(m_database.m_db, "ROLLBACK TRANSACTION", nullptr, nullptr, nullptr);
        if (res != SQLITE_OK) {
            LogPrintf("SQLiteBatch: Failed to abort the transaction\n");
        }
        return res == SQLITE_OK;
        */
    }
    
    pub fn setup_sql_statements(&mut self)  {
        
        todo!();
        /*
            const std::vector<std::pair<sqlite3_stmt**, const char*>> statements{
            {&m_read_stmt, "SELECT value FROM main WHERE key = ?"},
            {&m_insert_stmt, "INSERT INTO main VALUES(?, ?)"},
            {&m_overwrite_stmt, "INSERT or REPLACE into main values(?, ?)"},
            {&m_delete_stmt, "DELETE FROM main WHERE key = ?"},
            {&m_cursor_stmt, "SELECT key, value FROM main"},
        };

        for (const auto& [stmt_prepared, stmt_text] : statements) {
            if (*stmt_prepared == nullptr) {
                int res = sqlite3_prepare_v2(m_database.m_db, stmt_text, -1, stmt_prepared, nullptr);
                if (res != SQLITE_OK) {
                    throw std::runtime_error(strprintf(
                        "SQLiteDatabase: Failed to setup SQL statements: %s\n", sqlite3_errstr(res)));
                }
            }
        }
        */
    }
}