1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
crate::ix!();
pub trait ProcessGetData {
fn process_get_data(
self: Arc<Self>,
pfrom: &mut AmoWriteGuard<Box<dyn NodeInterface>>,
peer: Amo<Peer>,
interrupt_msg_proc: &AtomicBool);
}
impl ProcessGetData for PeerManager {
#[EXCLUSIVE_LOCKS_REQUIRED(peer.m_getdata_requests_mutex)]
#[LOCKS_EXCLUDED(CS_MAIN)]
fn process_get_data(
self: Arc<Self>,
mut pfrom: &mut AmoWriteGuard<Box<dyn NodeInterface>>,
peer: Amo<Peer>,
interrupt_msg_proc: &AtomicBool) {
assert_lock_not_held!(CS_MAIN);
let gpeer = peer.get();
let mut guard = gpeer.getdata_requests.lock();
let mut it = guard.iter().enumerate().peekable();
let mut not_found: Vec<Inv> = vec![];
let msg_maker: NetMsgMaker = NetMsgMaker::new(pfrom.get_common_version());
let now = get_datetime();
// Get last mempool request time
let mempool_req: Option<OffsetDateTime> = match pfrom.has_tx_relay() {
true =>
pfrom.get_tx_relay()
.last_mempool_req
.load(atomic::Ordering::Relaxed),
false => None,
};
// Process as many TX items from the front
// of the getdata queue as possible, since
// they're common and it's efficient to
// batch process them.
while it.peek().is_some() && it.peek().unwrap().1.is_gen_tx_msg() {
if interrupt_msg_proc.load(atomic::Ordering::Relaxed) {
return;
}
// The send buffer provides
// backpressure. If there's no space
// in the buffer, pause processing
// until the next call.
if pfrom.send_paused() {
break;
}
let inv: &Inv = it.peek().unwrap().1;
it.next();
if !pfrom.has_tx_relay() {
// Ignore GETDATA requests for
// transactions from blocks-only
// peers.
continue;
}
let tx: TransactionRef
= self.clone().find_tx_for_get_data(
&***pfrom,
&(inv.clone()).into(),
mempool_req,
now
);
if tx.is_some() {
// WTX and WITNESS_TX imply we serialize with witness
let n_send_flags: i32 = (match inv.is_msg_tx() {
true => SERIALIZE_TRANSACTION_NO_WITNESS,
false => 0
});
self.connman.get_mut().push_message(
&mut *pfrom,
msg_maker.make_with_flags(
n_send_flags,
NetMsgType::TX,
&[
&tx.clone()
]
)
);
self.mempool
.get_mut()
.remove_unbroadcast_tx(tx.get().get_hash(), None);
// As we're going to send tx,
// make sure its unconfirmed
// parents are made requestable.
let mut parent_ids_to_add: Vec<u256> = vec![];
{
let mempool = self.mempool.get();
let mut guard = mempool.cs.lock();
let txiter = mempool.get_iter(
tx.get().get_hash()
);
if txiter.is_some() {
let parents: &TxMemPoolEntryParents
= txiter.as_ref().unwrap().get_mem_pool_parents_const::<&TxMemPoolEntryParents>();
parent_ids_to_add.reserve(parents.len());
for parent in parents.iter() {
if parent.get().get_time() > now - UNCONDITIONAL_RELAY_DELAY {
let parent = parent.get();
let parent_tx = parent.get_tx();
let parent_tx_guard = parent_tx.get();
let parent_hash = parent_tx_guard.get_hash();
parent_ids_to_add.push(parent_hash.clone());
}
}
}
}
for parent_txid in parent_ids_to_add.iter() {
// Relaying a transaction with
// a recent but unconfirmed
// parent.
if {
let tx_relay = pfrom.get_tx_relay();
let mut guard = tx_relay.cs_tx_inventory.lock();
!pfrom.get_tx_relay()
.cs_tx_inventory.lock()
.filter_inventory_known
.contains_key(parent_txid.as_slice())
}
{
let mut guard = CS_MAIN.lock();
create_state(pfrom.get_id())
.get_mut()
.recently_announced_invs
.insert_key(parent_txid.as_slice());
}
}
} else {
not_found.push(inv.clone());
}
}
// Only process one BLOCK item per call,
// since they're uncommon and can be
// expensive to process.
if it.peek().is_some()
&& !pfrom.send_paused() {
let inv: &Inv = it.peek().unwrap().1;
it.next();
if inv.is_gen_blk_msg() {
self.clone().process_get_block_data(
&mut pfrom,
peer.clone(),
inv
);
}
// else: If the first item on the queue is an unknown type, we erase it
// and continue processing the queue on the next call.
}
{
let idx = it.peek().unwrap().0;
gpeer.getdata_requests.lock().drain(0..idx);
}
if !not_found.is_empty() {
// Let the peer know that we didn't
// find what it asked for, so it
// doesn't have to wait around
// forever.
//
// SPV clients care about this
// message: it's needed when they are
// recursively walking the
// dependencies of relevant
// unconfirmed transactions. SPV
// clients want to do that because
// they want to know about (and store
// and rebroadcast and risk analyze)
// the dependencies of transactions
// relevant to them, without having
// to download the entire memory
// pool.
//
// Also, other nodes can use these
// messages to automatically request
// a transaction from some other peer
// that annnounced it, and stop
// waiting for us to respond.
//
// In normal operation, we often send
// NOTFOUND messages for parents of
// transactions that we relay; if
// a peer is missing a parent, they
// may assume we have them and
// request the parents from us.
self.connman.get_mut().push_message(
&mut *pfrom,
msg_maker.make(
NetMsgType::NOTFOUND,
&[
¬_found
]
)
);
}
}
}