1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
crate::ix!();
//-------------------------------------------[.cpp/bitcoin/src/test/fuzz/versionbits.cpp]
pub struct TestConditionChecker {
cache: RefCell<ThresholdConditionCache>,
dummy_params: ChainConsensusParams,
begin: i64,
end: i64,
period: i32,
threshold: i32,
min_activation_height: i32,
bit: i32,
}
impl abstract_threshold_condition_checker::Interface for TestConditionChecker { }
impl abstract_threshold_condition_checker::Threshold for TestConditionChecker {
fn threshold(&self, params: &ChainConsensusParams) -> i32 {
todo!();
/*
return m_threshold;
*/
}
}
impl abstract_threshold_condition_checker::Period for TestConditionChecker {
fn period(&self, params: &ChainConsensusParams) -> i32 {
todo!();
/*
return m_period;
*/
}
}
impl abstract_threshold_condition_checker::MinActivationHeight for TestConditionChecker {
fn min_activation_height(&self, params: &ChainConsensusParams) -> i32 {
todo!();
/*
return m_min_activation_height;
*/
}
}
impl abstract_threshold_condition_checker::EndTime for TestConditionChecker {
fn end_time(&self, params: &ChainConsensusParams) -> i64 {
todo!();
/*
return m_end;
*/
}
}
impl abstract_threshold_condition_checker::BeginTime for TestConditionChecker {
fn begin_time(&self, params: &ChainConsensusParams) -> i64 {
todo!();
/*
return m_begin;
*/
}
}
impl abstract_threshold_condition_checker::Condition for TestConditionChecker {
fn condition(&self,
pindex: *const BlockIndex,
params: &ChainConsensusParams) -> bool {
todo!();
/*
return Condition(pindex->nVersion);
*/
}
}
impl TestConditionChecker {
pub fn new(
begin: i64,
end: i64,
period: i32,
threshold: i32,
min_activation_height: i32,
bit: i32) -> Self {
todo!();
/*
: m_begin{begin}, m_end{end}, m_period{period}, m_threshold{threshold}, m_min_activation_height{min_activation_height}, m_bit{bit}
assert(m_period > 0);
assert(0 <= m_threshold && m_threshold <= m_period);
assert(0 <= m_bit && m_bit < 32 && m_bit < VERSIONBITS_NUM_BITS);
assert(0 <= m_min_activation_height);
*/
}
pub fn get_state_for(&self, pindex_prev: *const BlockIndex) -> ThresholdState {
todo!();
/*
return AbstractThresholdConditionChecker::GetStateFor(pindexPrev, dummy_params, m_cache);
*/
}
pub fn get_state_since_height_for(&self, pindex_prev: *const BlockIndex) -> i32 {
todo!();
/*
return AbstractThresholdConditionChecker::GetStateSinceHeightFor(pindexPrev, dummy_params, m_cache);
*/
}
pub fn get_state_statistics_for(&self, pindex_prev: *const BlockIndex) -> BIP9Stats {
todo!();
/*
return AbstractThresholdConditionChecker::GetStateStatisticsFor(pindexPrev, dummy_params);
*/
}
pub fn condition_with_version(&self, version: i32) -> bool {
todo!();
/*
uint32_t mask = ((uint32_t)1) << m_bit;
return (((version & VERSIONBITS_TOP_MASK) == VERSIONBITS_TOP_BITS) && (version & mask) != 0);
*/
}
pub fn condition_with_blockindex(&self, pindex: *const BlockIndex) -> bool {
todo!();
/*
return Condition(pindex->nVersion);
*/
}
}
/**
| Track blocks mined for test
|
*/
pub struct Blocks {
blocks: Vec<Box<BlockIndex>>,
start_time: u32,
interval: u32,
signal: i32,
no_signal: i32,
}
impl Blocks {
pub fn new(
start_time: u32,
interval: u32,
signal: i32,
no_signal: i32) -> Self {
todo!();
/*
: m_start_time{start_time}, m_interval{interval}, m_signal{signal}, m_no_signal{no_signal}
*/
}
pub fn size(&self) -> usize {
todo!();
/*
return m_blocks.size();
*/
}
pub fn tip(&self) -> Option<Arc<BlockIndex>> {
todo!();
/*
return m_blocks.empty() ? nullptr : m_blocks.back().get();
*/
}
pub fn mine_block(&mut self, signal: bool) -> *mut BlockIndex {
todo!();
/*
CBlockHeader header;
header.nVersion = signal ? m_signal : m_no_signal;
header.nTime = m_start_time + m_blocks.size() * m_interval;
header.nBits = 0x1d00ffff;
auto current_block = std::make_unique<CBlockIndex>(header);
current_block->pprev = tip();
current_block->nHeight = m_blocks.size();
current_block->BuildSkip();
return m_blocks.emplace_back(std::move(current_block)).get();
*/
}
}
lazy_static!{
/*
std::unique_ptr<const CChainParams> g_params;
*/
}
pub fn initialize() {
todo!();
/*
// this is actually comparatively slow, so only do it once
g_params = CreateChainParams(ArgsManager{}, CBaseChainParams::MAIN);
assert(g_params != nullptr);
*/
}
pub const MAX_START_TIME: u32 = 4102444800; // 2100-01-01
#[fuzz_test(initializer = "initialize")]
fn versionbits() {
todo!();
/*
const CChainParams& params = *g_params;
const int64_t interval = params.GetConsensus().nPowTargetSpacing;
assert(interval > 1); // need to be able to halve it
assert(interval < std::numeric_limits<int32_t>::max());
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
// making period/max_periods larger slows these tests down significantly
const int period = 32;
const size_t max_periods = 16;
const size_t max_blocks = 2 * period * max_periods;
const int threshold = fuzzed_data_provider.ConsumeIntegralInRange(1, period);
assert(0 < threshold && threshold <= period); // must be able to both pass and fail threshold!
// too many blocks at 10min each might cause uint32_t time to overflow if
// block_start_time is at the end of the range above
assert(std::numeric_limits<uint32_t>::max() - MAX_START_TIME > interval * max_blocks);
const int64_t block_start_time = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(params.GenesisBlock().nTime, MAX_START_TIME);
// what values for version will we use to signal / not signal?
const int32_t ver_signal = fuzzed_data_provider.ConsumeIntegral<int32_t>();
const int32_t ver_nosignal = fuzzed_data_provider.ConsumeIntegral<int32_t>();
// select deployment parameters: bit, start time, timeout
const int bit = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, VERSIONBITS_NUM_BITS - 1);
bool always_active_test = false;
bool never_active_test = false;
int64_t start_time;
int64_t timeout;
if (fuzzed_data_provider.ConsumeBool()) {
// pick the timestamp to switch based on a block
// note states will change *after* these blocks because mediantime lags
int start_block = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, period * (max_periods - 3));
int end_block = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, period * (max_periods - 3));
start_time = block_start_time + start_block * interval;
timeout = block_start_time + end_block * interval;
// allow for times to not exactly match a block
if (fuzzed_data_provider.ConsumeBool()) start_time += interval / 2;
if (fuzzed_data_provider.ConsumeBool()) timeout += interval / 2;
} else {
if (fuzzed_data_provider.ConsumeBool()) {
start_time = consensus::BIP9Deployment::ALWAYS_ACTIVE;
always_active_test = true;
} else {
start_time = consensus::BIP9Deployment::NEVER_ACTIVE;
never_active_test = true;
}
timeout = fuzzed_data_provider.ConsumeBool() ? consensus::BIP9Deployment::NO_TIMEOUT : fuzzed_data_provider.ConsumeIntegral<int64_t>();
}
int min_activation = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, period * max_periods);
TestConditionChecker checker(start_time, timeout, period, threshold, min_activation, bit);
// Early exit if the versions don't signal sensibly for the deployment
if (!checker.Condition(ver_signal)) return;
if (checker.Condition(ver_nosignal)) return;
if (ver_nosignal < 0) return;
// TOP_BITS should ensure version will be positive and meet min
// version requirement
assert(ver_signal > 0);
assert(ver_signal >= VERSIONBITS_LAST_OLD_BLOCK_VERSION);
// Now that we have chosen time and versions, setup to mine blocks
Blocks blocks(block_start_time, interval, ver_signal, ver_nosignal);
/* Strategy:
* * we will mine a final period worth of blocks, with
* randomised signalling according to a mask
* * but before we mine those blocks, we will mine some
* randomised number of prior periods; with either all
* or no blocks in the period signalling
*
* We establish the mask first, then consume "bools" until
* we run out of fuzz data to work out how many prior periods
* there are and which ones will signal.
*/
// establish the mask
const uint32_t signalling_mask = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
// mine prior periods
while (fuzzed_data_provider.remaining_bytes() > 0) {
// all blocks in these periods either do or don't signal
bool signal = fuzzed_data_provider.ConsumeBool();
for (int b = 0; b < period; ++b) {
blocks.mine_block(signal);
}
// don't risk exceeding max_blocks or times may wrap around
if (blocks.size() + 2 * period > max_blocks) break;
}
// NOTE: fuzzed_data_provider may be fully consumed at this point and should not be used further
// now we mine the final period and check that everything looks sane
// count the number of signalling blocks
int blocks_sig = 0;
// get the info for the first block of the period
CBlockIndex* prev = blocks.tip();
const int exp_since = checker.GetStateSinceHeightFor(prev);
const ThresholdState exp_state = checker.GetStateFor(prev);
BIP9Stats last_stats = checker.GetStateStatisticsFor(prev);
int prev_next_height = (prev == nullptr ? 0 : prev->nHeight + 1);
assert(exp_since <= prev_next_height);
// mine (period-1) blocks and check state
for (int b = 1; b < period; ++b) {
const bool signal = (signalling_mask >> (b % 32)) & 1;
if (signal) ++blocks_sig;
CBlockIndex* current_block = blocks.mine_block(signal);
// verify that signalling attempt was interpreted correctly
assert(checker.Condition(current_block) == signal);
// state and since don't change within the period
const ThresholdState state = checker.GetStateFor(current_block);
const int since = checker.GetStateSinceHeightFor(current_block);
assert(state == exp_state);
assert(since == exp_since);
// GetStateStatistics may crash when state is not STARTED
if (state != ThresholdState::STARTED) continue;
// check that after mining this block stats change as expected
const BIP9Stats stats = checker.GetStateStatisticsFor(current_block);
assert(stats.period == period);
assert(stats.threshold == threshold);
assert(stats.elapsed == b);
assert(stats.count == last_stats.count + (signal ? 1 : 0));
assert(stats.possible == (stats.count + period >= stats.elapsed + threshold));
last_stats = stats;
}
if (exp_state == ThresholdState::STARTED) {
// double check that stats.possible is sane
if (blocks_sig >= threshold - 1) assert(last_stats.possible);
}
// mine the final block
bool signal = (signalling_mask >> (period % 32)) & 1;
if (signal) ++blocks_sig;
CBlockIndex* current_block = blocks.mine_block(signal);
assert(checker.Condition(current_block) == signal);
// GetStateStatistics is safe on a period boundary
// and has progressed to a new period
const BIP9Stats stats = checker.GetStateStatisticsFor(current_block);
assert(stats.period == period);
assert(stats.threshold == threshold);
assert(stats.elapsed == 0);
assert(stats.count == 0);
assert(stats.possible == true);
// More interesting is whether the state changed.
const ThresholdState state = checker.GetStateFor(current_block);
const int since = checker.GetStateSinceHeightFor(current_block);
// since is straightforward:
assert(since % period == 0);
assert(0 <= since && since <= current_block->nHeight + 1);
if (state == exp_state) {
assert(since == exp_since);
} else {
assert(since == current_block->nHeight + 1);
}
// state is where everything interesting is
switch (state) {
case ThresholdState::DEFINED:
assert(since == 0);
assert(exp_state == ThresholdState::DEFINED);
assert(current_block->GetMedianTimePast() < checker.m_begin);
break;
case ThresholdState::STARTED:
assert(current_block->GetMedianTimePast() >= checker.m_begin);
if (exp_state == ThresholdState::STARTED) {
assert(blocks_sig < threshold);
assert(current_block->GetMedianTimePast() < checker.m_end);
} else {
assert(exp_state == ThresholdState::DEFINED);
}
break;
case ThresholdState::LOCKED_IN:
if (exp_state == ThresholdState::LOCKED_IN) {
assert(current_block->nHeight + 1 < min_activation);
} else {
assert(exp_state == ThresholdState::STARTED);
assert(blocks_sig >= threshold);
}
break;
case ThresholdState::ACTIVE:
assert(always_active_test || min_activation <= current_block->nHeight + 1);
assert(exp_state == ThresholdState::ACTIVE || exp_state == ThresholdState::LOCKED_IN);
break;
case ThresholdState::FAILED:
assert(never_active_test || current_block->GetMedianTimePast() >= checker.m_end);
if (exp_state == ThresholdState::STARTED) {
assert(blocks_sig < threshold);
} else {
assert(exp_state == ThresholdState::FAILED);
}
break;
default:
assert(false);
}
if (blocks.size() >= period * max_periods) {
// we chose the timeout (and block times) so that by the time we have this many blocks it's all over
assert(state == ThresholdState::ACTIVE || state == ThresholdState::FAILED);
}
if (always_active_test) {
// "always active" has additional restrictions
assert(state == ThresholdState::ACTIVE);
assert(exp_state == ThresholdState::ACTIVE);
assert(since == 0);
} else if (never_active_test) {
// "never active" does too
assert(state == ThresholdState::FAILED);
assert(exp_state == ThresholdState::FAILED);
assert(since == 0);
} else {
// for signalled deployments, the initial state is always DEFINED
assert(since > 0 || state == ThresholdState::DEFINED);
assert(exp_since > 0 || exp_state == ThresholdState::DEFINED);
}
*/
}