bitcoin_block_parser/utxos.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
//! The [`FilterParser`] and [`UtxoParser`] parser must be used together in order to track UTXOs
//! as they move through the tx graph, giving you a map between:
//! * [`bitcoin::TxIn`] -> [`Amount`]
//! * [`bitcoin::TxOut`] -> [`OutStatus::Spent`] or [`OutStatus::Unspent`]
//!
//! This allows you to easily compute values such as mining fees and find all unspent txs.
//! The [`FilterParser`] creates a [`ScalableCuckooFilter`] which allows us to track all
//! unspent UTXOs with low memory-overhead similar to a bloom filter.
//!
//! The filter is written to a file which is loaded into memory by [`UtxoParser`], allowing us to
//! track the flow of all transaction amounts from inputs with a far lower memory overhead and no
//! performance hit of using an on-disk lookup table.
//!
//! Example usage:
//!
//! ```no_run
//! use bitcoin_block_parser::*;
//! use bitcoin_block_parser::utxos::*;
//!
//! // Note you only need to write the filter to a file once
//! let parser = FilterParser::new();
//! for _ in parser.parse_dir("/path/to/blocks").unwrap() {}
//! parser.write("filter.bin").unwrap();
//!
//! let parser = UtxoParser::new("filter.bin").unwrap();
//! // for every block
//! for block in parser.parse_dir("/path/to/blocks").unwrap() {
//! let block = block.unwrap();
//! // for every transaction
//! for (tx, txid) in block.transactions() {
//! let outs = block.output_status(txid).iter().zip(tx.output.iter());
//! let inputs = block.input_amount(txid).iter().zip(tx.input.iter());
//! // for every output in the transaction
//! for (status, output) in outs {
//! if *status == OutStatus::Unspent {
//! let script = &output.script_pubkey;
//! println!("{:?} has {} unspent funds", script, output.value);
//! }
//! }
//! // for every input in the transaction
//! for (amount, input) in inputs {
//! let outpoint = &input.previous_output;
//! println!("{:?} has {} input funds", outpoint, amount);
//! }
//! }
//! }
//! ```
use crate::blocks::{BlockParser, Options};
use anyhow::Result;
use bitcoin::hashes::Hash;
use bitcoin::{Amount, Block, OutPoint, Transaction, Txid};
use rand::rngs::SmallRng;
use rand::{Error, RngCore, SeedableRng};
use rustc_hash::{FxHashMap, FxHasher};
use scalable_cuckoo_filter::{ScalableCuckooFilter, ScalableCuckooFilterBuilder};
use serde::{Deserialize, Serialize};
use std::fmt::{Debug, Formatter};
use std::fs::File;
use std::hash::Hasher;
use std::io::{BufReader, BufWriter, Read};
use std::iter::Zip;
use std::slice::Iter;
use std::sync::{Arc, Mutex};
type OutPoints = (Vec<ShortOutPoint>, Vec<ShortOutPoint>);
/// A parser that writes a probabilistic filter of unspent [`ShortOutPoint`]
///
/// We use a [`ScalableCuckooFilter`] which is compact like a bloom filter, but allows us
/// to remove elements and grow/shrink the filter as needed.
/// We use this filter in [`UtxoParser`] to avoid caching UTXOs when tracking input amounts and
/// labeling outputs as [`OutStatus::Spent`] or [`OutStatus::Unspent`]
#[derive(Clone)]
pub struct FilterParser {
filter: Arc<Mutex<OutPointFilter>>,
}
impl Default for FilterParser {
fn default() -> Self {
Self::new()
}
}
impl FilterParser {
/// Constructs a new filter parser
pub fn new() -> Self {
Self {
filter: Arc::new(Mutex::new(OutPointFilter::new(300_000_000))),
}
}
/// Writes the filter to disk for use in another parser (see [`UtxoParser::new`])
/// You must call the [`FilterParser::parse`] function first.
pub fn write(self, output: &str) -> Result<()> {
let writer = BufWriter::new(File::create(output)?);
let filter = Arc::try_unwrap(self.filter).unwrap();
let mut filter = filter.into_inner().unwrap();
filter.shrink_to_fit();
postcard::to_io(&filter, writer)?;
Ok(())
}
}
impl BlockParser<OutPoints> for FilterParser {
// By extracting the [`ShortOutPoint`] here we optimize the memory and computation
// required.
fn extract(&self, block: Block) -> Vec<OutPoints> {
let mut inputs = vec![];
let mut outputs = vec![];
for tx in block.txdata.iter() {
let txid = tx.compute_txid();
for input in &tx.input {
inputs.push(ShortOutPoint::new(&input.previous_output));
}
for (index, _) in tx.output.iter().enumerate() {
let outpoint = OutPoint::new(txid, index as u32);
outputs.push(ShortOutPoint::new(&outpoint));
}
}
vec![(inputs, outputs)]
}
// Access the `filter` lock in batch to reduce contention
fn batch(&self, items: Vec<OutPoints>) -> Vec<OutPoints> {
let filter = &mut self.filter.lock().unwrap();
for (inputs, outputs) in items {
for output in outputs {
filter.insert(&output);
}
for input in inputs {
filter.remove(&input);
}
}
vec![]
}
/// In order to track UTXO amounts we must process blocks in-order
fn options() -> Options {
Options::default().order_output()
}
}
/// Parser that tracks unspent outputs and input amounts to produce [`UtxoBlock`]
///
/// See the [module docs](crate::utxos) for example usage.
#[derive(Clone)]
pub struct UtxoParser {
unspent: Arc<Mutex<FxHashMap<ShortOutPoint, Amount>>>,
filter: Arc<OutPointFilter>,
}
impl UtxoParser {
/// Create a new parser from a file generated by [`FilterParser`]
pub fn new(filter_file: &str) -> Result<Self> {
let mut reader = BufReader::new(File::open(filter_file)?);
let mut buffer = vec![];
reader.read_to_end(&mut buffer)?;
let filter: OutPointFilter = postcard::from_bytes(&buffer)?;
Ok(Self {
unspent: Arc::new(Mutex::new(Default::default())),
filter: Arc::new(filter),
})
}
}
impl BlockParser<UtxoBlock> for UtxoParser {
// We try to perform as much computation as possible here where block order doesn't matter
// because we benefit from multithreading.
fn extract(&self, block: Block) -> Vec<UtxoBlock> {
let txids: Vec<Txid> = block.txdata.iter().map(|tx| tx.compute_txid()).collect();
let mut output_status = FxHashMap::<Txid, Vec<OutStatus>>::default();
for (tx, txid) in block.txdata.iter().zip(txids.iter()) {
let entry = output_status.entry(*txid).or_default();
for (index, _) in tx.output.iter().enumerate() {
let outpoint = ShortOutPoint::new(&OutPoint::new(*txid, index as u32));
if self.filter.contains(&outpoint) {
entry.push(OutStatus::Unspent);
} else {
entry.push(OutStatus::Spent);
}
}
}
vec![UtxoBlock {
block,
txids,
input_amounts: Default::default(),
output_status,
}]
}
fn batch(&self, items: Vec<UtxoBlock>) -> Vec<UtxoBlock> {
let mut results = vec![];
let unspent = &mut self.unspent.lock().unwrap();
for mut block in items {
let mut input_amounts = FxHashMap::<Txid, Vec<Amount>>::default();
for (tx, txid) in block.transactions() {
let statuses = block.output_status(txid);
for (status, (index, output)) in statuses.iter().zip(tx.output.iter().enumerate()) {
let outpoint = ShortOutPoint::new(&OutPoint::new(*txid, index as u32));
// do not cache unspent outputs (or we will use a lot of memory in `self.unspent`
if *status == OutStatus::Spent {
unspent.insert(outpoint, output.value);
}
}
for input in &tx.input {
let entry = input_amounts.entry(*txid).or_default();
let outpoint = ShortOutPoint::new(&input.previous_output);
if let Some(amount) = unspent.remove(&outpoint) {
entry.push(amount);
} else if tx.is_coinbase() {
entry.push(Amount::ZERO);
} else {
panic!("Input amount not found for {:?}", input.previous_output);
}
}
}
block.input_amounts = input_amounts;
results.push(block);
}
results
}
/// In order to track UTXO amounts we must process blocks in-order
///
/// We reduce the number of threads to reduce memory usage.
/// If you run into memory issues try lowering `num_threads` further or the `buffer_size`
fn options() -> Options {
Options::default().order_output().num_threads(64)
}
}
/// Wrapper for a filter that implements [`Serialize`] and [`Send`]
#[derive(Serialize, Deserialize, Debug)]
pub struct OutPointFilter(ScalableCuckooFilter<ShortOutPoint, FastHasher, FastRng>);
impl OutPointFilter {
/// Create a filter with a reasonable size and false positive rate
///
/// Because we are storing SHA256 hashes from [`Txid`] we use non-cryptographic [`rand::Rng`] and
/// [`Hasher`] which are optimized for speed without bias.
pub fn new(initial_capacity: usize) -> Self {
Self(
ScalableCuckooFilterBuilder::default()
.initial_capacity(initial_capacity)
.false_positive_probability(0.000_000_000_001)
.rng(FastRng::default())
.hasher(FastHasher::default())
.finish(),
)
}
/// See [`ScalableCuckooFilter::contains`]
pub fn contains(&self, outpoint: &ShortOutPoint) -> bool {
self.0.contains(outpoint)
}
/// See [`ScalableCuckooFilter::insert`]
pub fn insert(&mut self, outpoint: &ShortOutPoint) {
self.0.insert(outpoint);
}
/// See [`ScalableCuckooFilter::remove`]
pub fn remove(&mut self, outpoint: &ShortOutPoint) {
self.0.remove(outpoint);
}
/// See [`ScalableCuckooFilter::shrink_to_fit`]
pub fn shrink_to_fit(&mut self) {
self.0.shrink_to_fit();
}
}
/// Shortened [`OutPoint`] to save memory
#[derive(Eq, PartialEq, Hash, Debug, Clone)]
pub struct ShortOutPoint(pub Vec<u8>);
impl ShortOutPoint {
/// Shorten an existing [`OutPoint`]
///
/// - 2 bytes represent far more than the maximum tx outputs (2^16)
/// - 12 byte subset of the txid is unlikely to generate collisions even with 1 billion txs (~6.3e-12)
pub fn new(outpoint: &OutPoint) -> ShortOutPoint {
let mut bytes = vec![];
bytes.extend_from_slice(&outpoint.vout.to_le_bytes()[0..2]);
bytes.extend_from_slice(&outpoint.txid.as_byte_array()[0..12]);
ShortOutPoint(bytes)
}
}
/// Contains a block that has been parsed with frequently needed UTXO information
#[derive(Clone, Eq, PartialEq, Debug)]
pub struct UtxoBlock {
/// Underlying parsed block from [`bitcoin::Block`]
pub block: Block,
/// Precomputed txids for every transaction
txids: Vec<Txid>,
/// Map every tx in this block to the list of input amounts
input_amounts: FxHashMap<Txid, Vec<Amount>>,
/// Map every tx in this block to the list of output spent/unspent status
output_status: FxHashMap<Txid, Vec<OutStatus>>,
}
impl UtxoBlock {
/// Return all [`Transaction`] with [`Txid`] already calculated
pub fn transactions(&self) -> Zip<Iter<'_, Transaction>, Iter<'_, Txid>> {
self.block.txdata.iter().zip(self.txids.iter())
}
/// Given a tx in this block, return the in-order list of whether the output was spent/unspent
pub fn output_status(&self, txid: &Txid) -> &Vec<OutStatus> {
self.output_status.get(txid).expect("exists")
}
/// Given a tx in this block, return the in-order list of the input amounts
pub fn input_amount(&self, txid: &Txid) -> &Vec<Amount> {
self.input_amounts.get(txid).expect("exists")
}
}
/// Indicates what happens to this output
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum OutStatus {
/// The output was spent in a later block
Spent,
/// The output was never spent in any of the blocks we parsed
Unspent,
}
/// [`FxHasher`] doesn't implement [`Debug`]
#[derive(Default, Clone)]
struct FastHasher(FxHasher);
impl Hasher for FastHasher {
fn finish(&self) -> u64 {
self.0.finish()
}
fn write(&mut self, bytes: &[u8]) {
self.0.write(bytes)
}
}
impl Debug for FastHasher {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.write_str("FastHasher")
}
}
/// [`SmallRng`] doesn't implement [`Default`] required to deserialize
#[derive(Debug)]
struct FastRng(SmallRng);
impl Default for FastRng {
fn default() -> Self {
Self(SmallRng::seed_from_u64(0x2c76c58e13b3a812))
}
}
impl RngCore for FastRng {
fn next_u32(&mut self) -> u32 {
self.0.next_u32()
}
fn next_u64(&mut self) -> u64 {
self.0.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> std::result::Result<(), Error> {
self.0.try_fill_bytes(dest)
}
}
#[cfg(test)]
mod tests {
use crate::utxos::{OutPointFilter, ShortOutPoint};
#[test]
fn test_filter_serde() {
let mut filter = OutPointFilter::new(100);
filter.insert(&outpoint(0));
filter.insert(&outpoint(1));
let bytes = postcard::to_allocvec(&filter).unwrap();
let deserialized: OutPointFilter = postcard::from_bytes(&bytes).unwrap();
assert!(deserialized.contains(&outpoint(0)));
assert!(deserialized.contains(&outpoint(1)));
assert!(!deserialized.contains(&outpoint(2)));
assert!(!deserialized.contains(&outpoint(3)));
}
fn outpoint(n: u8) -> ShortOutPoint {
ShortOutPoint(vec![n])
}
}