1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//! Serial Peripheral Interface
//!
//! This implementation consumes the following hardware resources:
//! - Periodic timer to mark clock cycles
//! - Output GPIO pin for clock signal (SCLK)
//! - Output GPIO pin for data transmission (Master Output Slave Input - MOSI)
//! - Input GPIO pin for data reception (Master Input Slave Output - MISO)
//!
//! The timer must be configured to twice the desired communication frequency.
//!
//! SS/CS (slave select) must be handled independently.
//!
//! MSB-first and LSB-first bit orders are supported.
//!

pub use embedded_hal::spi::{MODE_0, MODE_1, MODE_2, MODE_3};

use embedded_hal::digital::v2::{InputPin, OutputPin};
use embedded_hal::spi::{FullDuplex, Mode, Polarity};
use embedded_hal::timer::{CountDown, Periodic};
use nb::block;

/// Error type
#[derive(Debug)]
pub enum Error<E> {
    /// Communication error
    Bus(E),
    /// Attempted read without input data
    NoData,
}

/// Transmission bit order
#[derive(Debug)]
pub enum BitOrder {
    /// Most significant bit first
    MSBFirst,
    /// Least significant bit first
    LSBFirst,
}

impl Default for BitOrder {
    /// Default bit order: MSB first
    fn default() -> Self {
        BitOrder::MSBFirst
    }
}

/// A Full-Duplex SPI implementation, takes 3 pins, and a timer running at 2x
/// the desired SPI frequency.
pub struct SPI<Miso, Mosi, Sck, Timer>
where
    Miso: InputPin,
    Mosi: OutputPin,
    Sck: OutputPin,
    Timer: CountDown + Periodic,
{
    mode: Mode,
    miso: Miso,
    mosi: Mosi,
    sck: Sck,
    timer: Timer,
    read_val: Option<u8>,
    bit_order: BitOrder,
}

impl<Miso, Mosi, Sck, Timer, E> SPI<Miso, Mosi, Sck, Timer>
where
    Miso: InputPin<Error = E>,
    Mosi: OutputPin<Error = E>,
    Sck: OutputPin<Error = E>,
    Timer: CountDown + Periodic,
{
    /// Create instance
    pub fn new(mode: Mode, miso: Miso, mosi: Mosi, sck: Sck, timer: Timer) -> Self {
        let mut spi = SPI {
            mode,
            miso,
            mosi,
            sck,
            timer,
            read_val: None,
            bit_order: BitOrder::default(),
        };

        match mode.polarity {
            Polarity::IdleLow => spi.sck.set_low(),
            Polarity::IdleHigh => spi.sck.set_high(),
        }
        .unwrap_or(());

        spi
    }

    /// Set transmission bit order
    pub fn set_bit_order(&mut self, order: BitOrder) {
        self.bit_order = order;
    }

    /// Allows for an access to the timer type.
    /// This can be used to change the speed.
    ///
    /// In closure you get ownership of the timer
    /// so you can destruct it and build it up again if necessary.
    ///
    /// # Example
    ///
    /// ```Rust
    ///spi.access_timer(|mut timer| {
    ///    timer.set_freq(4.mhz());
    ///    timer
    ///});
    ///```
    ///
    pub fn access_timer<F>(&mut self, f: F)
    where
        F: FnOnce(Timer) -> Timer,
    {
        // Create a zeroed timer.
        // This is unsafe, but its safety is guaranteed, though, because the zeroed timer is never used.
        let timer = unsafe { core::mem::zeroed() };
        // Get the timer in the struct.
        let timer = core::mem::replace(&mut self.timer, timer);
        // Give the timer to the closure and put the result back into the struct.
        self.timer = f(timer);
    }

    fn read_bit(&mut self) -> nb::Result<(), crate::spi::Error<E>> {
        let is_miso_high = self.miso.is_high().map_err(Error::Bus)?;
        let shifted_value = self.read_val.unwrap_or(0) << 1;
        if is_miso_high {
            self.read_val = Some(shifted_value | 1);
        } else {
            self.read_val = Some(shifted_value);
        }
        Ok(())
    }

    #[inline]
    fn set_clk_high(&mut self) -> Result<(), crate::spi::Error<E>> {
        self.sck.set_high().map_err(Error::Bus)
    }

    #[inline]
    fn set_clk_low(&mut self) -> Result<(), crate::spi::Error<E>> {
        self.sck.set_low().map_err(Error::Bus)
    }

    #[inline]
    fn wait_for_timer(&mut self) {
        block!(self.timer.wait()).ok();
    }
}

impl<Miso, Mosi, Sck, Timer, E> FullDuplex<u8> for SPI<Miso, Mosi, Sck, Timer>
where
    Miso: InputPin<Error = E>,
    Mosi: OutputPin<Error = E>,
    Sck: OutputPin<Error = E>,
    Timer: CountDown + Periodic,
{
    type Error = crate::spi::Error<E>;

    #[inline]
    fn read(&mut self) -> nb::Result<u8, Self::Error> {
        match self.read_val {
            Some(val) => Ok(val),
            None => Err(nb::Error::Other(crate::spi::Error::NoData)),
        }
    }

    fn send(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
        for bit_offset in 0..8 {
            let out_bit = match self.bit_order {
                BitOrder::MSBFirst => (byte >> (7 - bit_offset)) & 0b1,
                BitOrder::LSBFirst => (byte >> bit_offset) & 0b1,
            };

            if out_bit == 1 {
                self.mosi.set_high().map_err(Error::Bus)?;
            } else {
                self.mosi.set_low().map_err(Error::Bus)?;
            }

            match self.mode {
                MODE_0 => {
                    self.wait_for_timer();
                    self.set_clk_high()?;
                    self.read_bit()?;
                    self.wait_for_timer();
                    self.set_clk_low()?;
                }
                MODE_1 => {
                    self.set_clk_high()?;
                    self.wait_for_timer();
                    self.read_bit()?;
                    self.set_clk_low()?;
                    self.wait_for_timer();
                }
                MODE_2 => {
                    self.wait_for_timer();
                    self.set_clk_low()?;
                    self.read_bit()?;
                    self.wait_for_timer();
                    self.set_clk_high()?;
                }
                MODE_3 => {
                    self.set_clk_low()?;
                    self.wait_for_timer();
                    self.read_bit()?;
                    self.set_clk_high()?;
                    self.wait_for_timer();
                }
            }
        }

        Ok(())
    }
}

impl<Miso, Mosi, Sck, Timer, E> embedded_hal::blocking::spi::transfer::Default<u8>
    for SPI<Miso, Mosi, Sck, Timer>
where
    Miso: InputPin<Error = E>,
    Mosi: OutputPin<Error = E>,
    Sck: OutputPin<Error = E>,
    Timer: CountDown + Periodic,
{
}

impl<Miso, Mosi, Sck, Timer, E> embedded_hal::blocking::spi::write::Default<u8>
    for SPI<Miso, Mosi, Sck, Timer>
where
    Miso: InputPin<Error = E>,
    Mosi: OutputPin<Error = E>,
    Sck: OutputPin<Error = E>,
    Timer: CountDown + Periodic,
{
}