1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
//! JSON Web Algorithms
//!
//! Code for implementing JWA according to [RFC 7518](https://tools.ietf.org/html/rfc7518).
//!
//! Typically, you will not use these directly, but as part of a JWS or JWE.

use std::fmt;

use once_cell::sync::Lazy;
use ring::constant_time::verify_slices_are_equal;
use ring::rand::SystemRandom;
use ring::signature::KeyPair;
use ring::{aead, hmac, rand, signature};
use serde::de::DeserializeOwned;
use serde::{Deserialize, Serialize};

use crate::errors::Error;
use crate::jwk;
use crate::jws::Secret;
use crate::Empty;

pub use ring::rand::SecureRandom;

/// AES GCM Tag Size, in bytes
const AES_GCM_TAG_SIZE: usize = 128 / 8;
/// AES GCM Nonce length, in bytes
const AES_GCM_NONCE_LENGTH: usize = 96 / 8;

/// A zeroed AES GCM Nonce EncryptionOptions
static AES_GCM_ZEROED_NONCE: Lazy<EncryptionOptions> = Lazy::new(|| EncryptionOptions::AES_GCM {
    nonce: vec![0; AES_GCM_NONCE_LENGTH],
});

/// A default `None` `EncryptionOptions`
pub(crate) const NONE_ENCRYPTION_OPTIONS: &EncryptionOptions = &EncryptionOptions::None;

/// Options to be passed in while performing an encryption operation, if required by the algorithm.
#[derive(Clone, Debug, Eq, PartialEq)]
#[allow(non_camel_case_types)]
#[derive(Default)]
pub enum EncryptionOptions {
    /// No options are required. Most algorithms do not require additional parameters
    #[default]
    None,
    /// Options for AES GCM encryption.
    AES_GCM {
        /// Initialization vector, or nonce for the AES GCM encryption. _MUST BE_ 96 bits long.
        ///
        /// AES GCM encryption operations should not reuse the nonce, or initialization vector.
        /// Users should keep track of previously used
        /// nonces and not reuse them. A simple way to keep track is to simply increment the nonce
        /// as a 96 bit counter.
        nonce: Vec<u8>,
    },
}

#[derive(Debug, Eq, PartialEq, Copy, Clone, Serialize, Deserialize)]
/// Algorithms described by [RFC 7518](https://tools.ietf.org/html/rfc7518).
/// This enum is serialized `untagged`.
#[serde(untagged)]
pub enum Algorithm {
    /// Algorithms meant for Digital signature or MACs
    /// See [RFC7518#3](https://tools.ietf.org/html/rfc7518#section-3)
    Signature(SignatureAlgorithm),
    /// Algorithms meant for key management. The algorithms are either meant to
    /// encrypt a content encryption key or determine the content encryption key.
    /// See [RFC7518#4](https://tools.ietf.org/html/rfc7518#section-4)
    KeyManagement(KeyManagementAlgorithm),
    /// Algorithms meant for content encryption.
    /// See [RFC7518#5](https://tools.ietf.org/html/rfc7518#section-5)
    ContentEncryption(ContentEncryptionAlgorithm),
}

#[derive(Debug, Eq, PartialEq, Copy, Clone, Serialize, Deserialize)]
/// The algorithms supported for digital signature and MACs, defined by
/// [RFC7518#3](https://tools.ietf.org/html/rfc7518#section-3).
#[derive(Default)]
pub enum SignatureAlgorithm {
    /// No encryption/signature is included for the JWT.
    /// During verification, the signature _MUST BE_ empty or verification  will fail.
    #[serde(rename = "none")]
    None,
    /// HMAC using SHA-256
    #[default]
    HS256,
    /// HMAC using SHA-384
    HS384,
    /// HMAC using SHA-512
    HS512,
    /// RSASSA-PKCS1-v1_5 using SHA-256
    RS256,
    /// RSASSA-PKCS1-v1_5 using SHA-384
    RS384,
    /// RSASSA-PKCS1-v1_5 using SHA-512
    RS512,
    /// ECDSA using P-256 and SHA-256
    ES256,
    /// ECDSA using P-384 and SHA-384
    ES384,
    /// ECDSA using P-521 and SHA-512 --
    /// This variant is [unsupported](https://github.com/briansmith/ring/issues/268) and will probably never be.
    ES512,
    /// RSASSA-PSS using SHA-256 and MGF1 with SHA-256.
    /// The size of the salt value is the same size as the hash function output.
    PS256,
    /// RSASSA-PSS using SHA-384 and MGF1 with SHA-384
    /// The size of the salt value is the same size as the hash function output.
    PS384,
    /// RSASSA-PSS using SHA-512 and MGF1 with SHA-512
    /// The size of the salt value is the same size as the hash function output.
    PS512,
}

/// Algorithms for key management as defined in [RFC7518#4](https://tools.ietf.org/html/rfc7518#section-4)
#[derive(Debug, Eq, PartialEq, Copy, Clone, Serialize, Deserialize)]
#[allow(non_camel_case_types)]
#[derive(Default)]
pub enum KeyManagementAlgorithm {
    /// RSAES-PKCS1-v1_5
    RSA1_5,
    /// RSAES OAEP using default parameters
    #[serde(rename = "RSA-OAEP")]
    RSA_OAEP,
    /// RSAES OAEP using SHA-256 and MGF1 with SHA-256
    #[serde(rename = "RSA-OAEP-256")]
    RSA_OAEP_256,
    /// AES Key Wrap using 128-bit key. _Unsupported_
    A128KW,
    /// AES Key Wrap using 192-bit key. _Unsupported_.
    /// This is [not supported](https://github.com/briansmith/ring/issues/112) by `ring`.
    A192KW,
    /// AES Key Wrap using 256-bit key. _Unsupported_
    A256KW,
    /// Direct use of a shared symmetric key
    #[serde(rename = "dir")]
    #[default]
    DirectSymmetricKey,
    /// ECDH-ES using Concat KDF
    #[serde(rename = "ECDH-ES")]
    ECDH_ES,
    /// ECDH-ES using Concat KDF and "A128KW" wrapping
    #[serde(rename = "ECDH-ES+A128KW")]
    ECDH_ES_A128KW,
    /// ECDH-ES using Concat KDF and "A192KW" wrapping
    #[serde(rename = "ECDH-ES+A192KW")]
    ECDH_ES_A192KW,
    /// ECDH-ES using Concat KDF and "A256KW" wrapping
    #[serde(rename = "ECDH-ES+A256KW")]
    ECDH_ES_A256KW,
    /// Key wrapping with AES GCM using 128-bit key alg
    A128GCMKW,
    /// Key wrapping with AES GCM using 192-bit key alg.
    /// This is [not supported](https://github.com/briansmith/ring/issues/112) by `ring`.
    A192GCMKW,
    /// Key wrapping with AES GCM using 256-bit key alg
    A256GCMKW,
    /// PBES2 with HMAC SHA-256 and "A128KW" wrapping
    #[serde(rename = "PBES2-HS256+A128KW")]
    PBES2_HS256_A128KW,
    /// PBES2 with HMAC SHA-384 and "A192KW" wrapping
    #[serde(rename = "PBES2-HS384+A192KW")]
    PBES2_HS384_A192KW,
    /// PBES2 with HMAC SHA-512 and "A256KW" wrapping
    #[serde(rename = "PBES2-HS512+A256KW")]
    PBES2_HS512_A256KW,
}

/// Describes the type of operations that the key management algorithm
/// supports with respect to a Content Encryption Key (CEK)
#[derive(Debug, Eq, PartialEq, Copy, Clone, Serialize, Deserialize)]
pub enum KeyManagementAlgorithmType {
    /// Wraps a randomly generated CEK using a symmetric encryption algorithm
    SymmetricKeyWrapping,
    /// Encrypt a randomly generated CEK using an asymmetric encryption algorithm,
    AsymmetricKeyEncryption,
    /// A key agreement algorithm to pick a CEK
    DirectKeyAgreement,
    /// A key agreement algorithm used to pick a symmetric CEK and wrap the CEK with a symmetric encryption algorithm
    KeyAgreementWithKeyWrapping,
    /// A user defined symmetric shared key is the CEK
    DirectEncryption,
}

/// Algorithms meant for content encryption.
/// See [RFC7518#5](https://tools.ietf.org/html/rfc7518#section-5)
#[derive(Debug, Eq, PartialEq, Copy, Clone, Serialize, Deserialize)]
#[allow(non_camel_case_types)]
#[derive(Default)]
pub enum ContentEncryptionAlgorithm {
    /// AES_128_CBC_HMAC_SHA_256 authenticated encryption algorithm enc
    #[serde(rename = "A128CBC-HS256")]
    A128CBC_HS256,
    /// AES_192_CBC_HMAC_SHA_384 authenticated encryption algorithm enc
    #[serde(rename = "A192CBC-HS384")]
    A192CBC_HS384,
    /// AES_256_CBC_HMAC_SHA_512 authenticated encryption algorithm enc
    #[serde(rename = "A256CBC-HS512")]
    A256CBC_HS512,
    /// AES GCM using 128-bit key
    #[default]
    A128GCM,
    /// AES GCM using 192-bit key
    /// This is [not supported](https://github.com/briansmith/ring/issues/112) by `ring`.
    A192GCM,
    /// AES GCM using 256-bit key
    A256GCM,
}

/// The result returned from an encryption operation
// TODO: Might have to turn this into an enum
#[derive(Clone, Debug, Eq, PartialEq, Default)]
pub struct EncryptionResult {
    /// The initialization vector, or nonce used in the encryption
    pub nonce: Vec<u8>,
    /// The encrypted payload
    pub encrypted: Vec<u8>,
    /// The authentication tag
    pub tag: Vec<u8>,
    /// Additional authenticated data that is integrity protected but not encrypted
    pub additional_data: Vec<u8>,
}

impl EncryptionOptions {
    /// Description of the type of key
    pub fn description(&self) -> &'static str {
        match self {
            EncryptionOptions::None => "None",
            EncryptionOptions::AES_GCM { .. } => "AES GCM Nonce/Initialization Vector",
        }
    }
}

impl fmt::Display for EncryptionOptions {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}

impl SignatureAlgorithm {
    /// Take some bytes and sign it according to the algorithm and secret provided.
    pub fn sign(self, data: &[u8], secret: &Secret) -> Result<Vec<u8>, Error> {
        use self::SignatureAlgorithm::*;

        match self {
            None => Self::sign_none(secret),
            HS256 | HS384 | HS512 => Self::sign_hmac(data, secret, self),
            RS256 | RS384 | RS512 | PS256 | PS384 | PS512 => Self::sign_rsa(data, secret, self),
            ES256 | ES384 | ES512 => Self::sign_ecdsa(data, secret, self),
        }
    }

    /// Verify signature based on the algorithm and secret provided.
    pub fn verify(
        self,
        expected_signature: &[u8],
        data: &[u8],
        secret: &Secret,
    ) -> Result<(), Error> {
        use self::SignatureAlgorithm::*;

        match self {
            None => Self::verify_none(expected_signature, secret),
            HS256 | HS384 | HS512 => Self::verify_hmac(expected_signature, data, secret, self),
            RS256 | RS384 | RS512 | PS256 | PS384 | PS512 | ES256 | ES384 | ES512 => {
                Self::verify_public_key(expected_signature, data, secret, self)
            }
        }
    }

    /// Returns the type of operations the key is meant for
    fn sign_none(secret: &Secret) -> Result<Vec<u8>, Error> {
        match *secret {
            Secret::None => {}
            _ => Err("Invalid secret type. `None` should be provided".to_string())?,
        };
        Ok(vec![])
    }

    fn sign_hmac(
        data: &[u8],
        secret: &Secret,
        algorithm: SignatureAlgorithm,
    ) -> Result<Vec<u8>, Error> {
        let secret = match *secret {
            Secret::Bytes(ref secret) => secret,
            _ => Err("Invalid secret type. A byte array is required".to_string())?,
        };

        let algorithm = match algorithm {
            SignatureAlgorithm::HS256 => &hmac::HMAC_SHA256,
            SignatureAlgorithm::HS384 => &hmac::HMAC_SHA384,
            SignatureAlgorithm::HS512 => &hmac::HMAC_SHA512,
            _ => unreachable!("Should not happen"),
        };
        let key = hmac::Key::new(*algorithm, secret);
        Ok(hmac::sign(&key, data).as_ref().to_vec())
    }

    fn sign_rsa(
        data: &[u8],
        secret: &Secret,
        algorithm: SignatureAlgorithm,
    ) -> Result<Vec<u8>, Error> {
        let key_pair = match *secret {
            Secret::RsaKeyPair(ref key_pair) => key_pair,
            _ => Err("Invalid secret type. A RsaKeyPair is required".to_string())?,
        };

        let rng = rand::SystemRandom::new();
        let mut signature = vec![0; key_pair.public().modulus_len()];
        let padding_algorithm: &dyn signature::RsaEncoding = match algorithm {
            SignatureAlgorithm::RS256 => &signature::RSA_PKCS1_SHA256,
            SignatureAlgorithm::RS384 => &signature::RSA_PKCS1_SHA384,
            SignatureAlgorithm::RS512 => &signature::RSA_PKCS1_SHA512,
            SignatureAlgorithm::PS256 => &signature::RSA_PSS_SHA256,
            SignatureAlgorithm::PS384 => &signature::RSA_PSS_SHA384,
            SignatureAlgorithm::PS512 => &signature::RSA_PSS_SHA512,
            _ => unreachable!("Should not happen"),
        };

        key_pair.sign(padding_algorithm, &rng, data, &mut signature)?;
        Ok(signature)
    }

    fn sign_ecdsa(
        data: &[u8],
        secret: &Secret,
        algorithm: SignatureAlgorithm,
    ) -> Result<Vec<u8>, Error> {
        let key_pair = match *secret {
            Secret::EcdsaKeyPair(ref key_pair) => key_pair,
            _ => Err("Invalid secret type. An EcdsaKeyPair is required".to_string())?,
        };
        if let SignatureAlgorithm::ES512 = algorithm {
            // See https://github.com/briansmith/ring/issues/268
            Err(Error::UnsupportedOperation)
        } else {
            let rng = rand::SystemRandom::new();
            let sig = key_pair.as_ref().sign(&rng, data)?;
            Ok(sig.as_ref().to_vec())
        }
    }

    fn verify_none(expected_signature: &[u8], secret: &Secret) -> Result<(), Error> {
        match *secret {
            Secret::None => {}
            _ => Err("Invalid secret type. `None` should be provided".to_string())?,
        };

        if expected_signature.is_empty() {
            Ok(())
        } else {
            Err(Error::UnspecifiedCryptographicError)
        }
    }

    fn verify_hmac(
        expected_signature: &[u8],
        data: &[u8],
        secret: &Secret,
        algorithm: SignatureAlgorithm,
    ) -> Result<(), Error> {
        let actual_signature = Self::sign_hmac(data, secret, algorithm)?;
        verify_slices_are_equal(expected_signature, actual_signature.as_ref())?;
        Ok(())
    }

    fn verify_public_key(
        expected_signature: &[u8],
        data: &[u8],
        secret: &Secret,
        algorithm: SignatureAlgorithm,
    ) -> Result<(), Error> {
        match *secret {
            Secret::PublicKey(ref public_key) => {
                let verification_algorithm: &dyn signature::VerificationAlgorithm = match algorithm
                {
                    SignatureAlgorithm::RS256 => &signature::RSA_PKCS1_2048_8192_SHA256,
                    SignatureAlgorithm::RS384 => &signature::RSA_PKCS1_2048_8192_SHA384,
                    SignatureAlgorithm::RS512 => &signature::RSA_PKCS1_2048_8192_SHA512,
                    SignatureAlgorithm::PS256 => &signature::RSA_PSS_2048_8192_SHA256,
                    SignatureAlgorithm::PS384 => &signature::RSA_PSS_2048_8192_SHA384,
                    SignatureAlgorithm::PS512 => &signature::RSA_PSS_2048_8192_SHA512,
                    SignatureAlgorithm::ES256 => &signature::ECDSA_P256_SHA256_FIXED,
                    SignatureAlgorithm::ES384 => &signature::ECDSA_P384_SHA384_FIXED,
                    SignatureAlgorithm::ES512 => Err(Error::UnsupportedOperation)?,
                    _ => unreachable!("Should not happen"),
                };

                let public_key = signature::UnparsedPublicKey::new(
                    verification_algorithm,
                    public_key.as_slice(),
                );
                public_key.verify(data, expected_signature)?;
                Ok(())
            }
            Secret::RsaKeyPair(ref keypair) => {
                let verification_algorithm: &dyn signature::VerificationAlgorithm = match algorithm
                {
                    SignatureAlgorithm::RS256 => &signature::RSA_PKCS1_2048_8192_SHA256,
                    SignatureAlgorithm::RS384 => &signature::RSA_PKCS1_2048_8192_SHA384,
                    SignatureAlgorithm::RS512 => &signature::RSA_PKCS1_2048_8192_SHA512,
                    SignatureAlgorithm::PS256 => &signature::RSA_PSS_2048_8192_SHA256,
                    SignatureAlgorithm::PS384 => &signature::RSA_PSS_2048_8192_SHA384,
                    SignatureAlgorithm::PS512 => &signature::RSA_PSS_2048_8192_SHA512,
                    _ => unreachable!("Should not happen"),
                };

                let public_key =
                    signature::UnparsedPublicKey::new(verification_algorithm, keypair.public_key());
                public_key.verify(data, expected_signature)?;
                Ok(())
            }
            Secret::RSAModulusExponent { ref n, ref e } => {
                let params = match algorithm {
                    SignatureAlgorithm::RS256 => &signature::RSA_PKCS1_2048_8192_SHA256,
                    SignatureAlgorithm::RS384 => &signature::RSA_PKCS1_2048_8192_SHA384,
                    SignatureAlgorithm::RS512 => &signature::RSA_PKCS1_2048_8192_SHA512,
                    SignatureAlgorithm::PS256 => &signature::RSA_PSS_2048_8192_SHA256,
                    SignatureAlgorithm::PS384 => &signature::RSA_PSS_2048_8192_SHA384,
                    SignatureAlgorithm::PS512 => &signature::RSA_PSS_2048_8192_SHA512,
                    _ => unreachable!("(n,e) secret with a non-rsa algorithm should not happen"),
                };

                let n_big_endian = n.to_bytes_be();
                let e_big_endian = e.to_bytes_be();
                let public_key = signature::RsaPublicKeyComponents {
                    n: n_big_endian,
                    e: e_big_endian,
                };
                public_key.verify(params, data, expected_signature)?;
                Ok(())
            }
            Secret::EcdsaKeyPair(ref keypair) => {
                let verification_algorithm: &dyn signature::VerificationAlgorithm = match algorithm
                {
                    SignatureAlgorithm::ES256 => &signature::ECDSA_P256_SHA256_FIXED,
                    SignatureAlgorithm::ES384 => &signature::ECDSA_P384_SHA384_FIXED,
                    SignatureAlgorithm::ES512 => Err(Error::UnsupportedOperation)?,
                    _ => unreachable!("Should not happen"),
                };

                let public_key =
                    signature::UnparsedPublicKey::new(verification_algorithm, keypair.public_key());
                public_key.verify(data, expected_signature)?;
                Ok(())
            }
            _ => unreachable!("This is a private method and should not be called erroneously."),
        }
    }
}

impl KeyManagementAlgorithm {
    /// Returns the type of operations that the algorithm is intended to support
    pub fn algorithm_type(self) -> KeyManagementAlgorithmType {
        use self::KeyManagementAlgorithm::*;

        match self {
            A128KW | A192KW | A256KW | A128GCMKW | A192GCMKW | A256GCMKW | PBES2_HS256_A128KW
            | PBES2_HS384_A192KW | PBES2_HS512_A256KW => {
                KeyManagementAlgorithmType::SymmetricKeyWrapping
            }
            RSA1_5 | RSA_OAEP | RSA_OAEP_256 => KeyManagementAlgorithmType::AsymmetricKeyEncryption,
            DirectSymmetricKey => KeyManagementAlgorithmType::DirectEncryption,
            ECDH_ES => KeyManagementAlgorithmType::DirectKeyAgreement,
            ECDH_ES_A128KW | ECDH_ES_A192KW | ECDH_ES_A256KW => {
                KeyManagementAlgorithmType::KeyAgreementWithKeyWrapping
            }
        }
    }

    /// Return the Content Encryption Key (CEK) based on the key management algorithm
    ///
    /// If the algorithm is `dir` or `DirectSymmetricKey`, the key provided is the CEK.
    /// Otherwise, the appropriate algorithm will be used to derive or generate the required CEK
    /// using the provided key.
    pub fn cek<T>(
        self,
        content_alg: ContentEncryptionAlgorithm,
        key: &jwk::JWK<T>,
    ) -> Result<jwk::JWK<Empty>, Error>
    where
        T: Serialize + DeserializeOwned,
    {
        use self::KeyManagementAlgorithm::*;

        match self {
            DirectSymmetricKey => self.cek_direct(key),
            A128GCMKW | A256GCMKW => self.cek_aes_gcm(content_alg),
            _ => Err(Error::UnsupportedOperation),
        }
    }

    fn cek_direct<T>(self, key: &jwk::JWK<T>) -> Result<jwk::JWK<Empty>, Error>
    where
        T: Serialize + DeserializeOwned,
    {
        match key.key_type() {
            jwk::KeyType::Octet => Ok(key.clone_without_additional()),
            others => Err(unexpected_key_type_error!(jwk::KeyType::Octet, others)),
        }
    }

    fn cek_aes_gcm(
        self,
        content_alg: ContentEncryptionAlgorithm,
    ) -> Result<jwk::JWK<Empty>, Error> {
        let key = content_alg.generate_key()?;
        Ok(jwk::JWK {
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                value: key,
                key_type: Default::default(),
            }),
            common: jwk::CommonParameters {
                public_key_use: Some(jwk::PublicKeyUse::Encryption),
                algorithm: Some(Algorithm::ContentEncryption(content_alg)),
                ..Default::default()
            },
            additional: Default::default(),
        })
    }

    /// Encrypt or wrap a Content Encryption Key with the provided algorithm
    pub fn wrap_key<T: Serialize + DeserializeOwned>(
        self,
        payload: &[u8],
        key: &jwk::JWK<T>,
        options: &EncryptionOptions,
    ) -> Result<EncryptionResult, Error> {
        use self::KeyManagementAlgorithm::*;

        match self {
            A128GCMKW | A192GCMKW | A256GCMKW => self.aes_gcm_encrypt(payload, key, options),
            DirectSymmetricKey => match *options {
                EncryptionOptions::None => Ok(Default::default()),
                ref other => Err(unexpected_encryption_options_error!(
                    EncryptionOptions::None,
                    other
                )),
            },
            _ => Err(Error::UnsupportedOperation),
        }
    }

    /// Decrypt or unwrap a CEK with the provided algorithm
    pub fn unwrap_key<T: Serialize + DeserializeOwned>(
        self,
        encrypted: &EncryptionResult,
        content_alg: ContentEncryptionAlgorithm,
        key: &jwk::JWK<T>,
    ) -> Result<jwk::JWK<Empty>, Error> {
        use self::KeyManagementAlgorithm::*;

        match self {
            A128GCMKW | A192GCMKW | A256GCMKW => self.aes_gcm_decrypt(encrypted, content_alg, key),
            DirectSymmetricKey => Ok(key.clone_without_additional()),
            _ => Err(Error::UnsupportedOperation),
        }
    }

    fn aes_gcm_encrypt<T: Serialize + DeserializeOwned>(
        self,
        payload: &[u8],
        key: &jwk::JWK<T>,
        options: &EncryptionOptions,
    ) -> Result<EncryptionResult, Error> {
        use self::KeyManagementAlgorithm::*;

        let algorithm = match self {
            A128GCMKW => &aead::AES_128_GCM,
            A256GCMKW => &aead::AES_256_GCM,
            _ => Err(Error::UnsupportedOperation)?,
        };

        let nonce = match *options {
            EncryptionOptions::AES_GCM { ref nonce } => Ok(nonce),
            ref others => Err(unexpected_encryption_options_error!(
                AES_GCM_ZEROED_NONCE,
                others
            )),
        }?;
        // FIXME: Should we check the nonce length here or leave it to ring?

        aes_gcm_encrypt(algorithm, payload, nonce.as_slice(), &[], key)
    }

    fn aes_gcm_decrypt<T: Serialize + DeserializeOwned>(
        self,
        encrypted: &EncryptionResult,
        content_alg: ContentEncryptionAlgorithm,
        key: &jwk::JWK<T>,
    ) -> Result<jwk::JWK<Empty>, Error> {
        use self::KeyManagementAlgorithm::*;

        let algorithm = match self {
            A128GCMKW => &aead::AES_128_GCM,
            A256GCMKW => &aead::AES_256_GCM,
            _ => Err(Error::UnsupportedOperation)?,
        };

        let cek = aes_gcm_decrypt(algorithm, encrypted, key)?;
        Ok(jwk::JWK {
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                value: cek,
                key_type: Default::default(),
            }),
            common: jwk::CommonParameters {
                public_key_use: Some(jwk::PublicKeyUse::Encryption),
                algorithm: Some(Algorithm::ContentEncryption(content_alg)),
                ..Default::default()
            },
            additional: Default::default(),
        })
    }
}

impl ContentEncryptionAlgorithm {
    /// Convenience function to generate a new random key with the required length
    pub fn generate_key(self) -> Result<Vec<u8>, Error> {
        use self::ContentEncryptionAlgorithm::*;

        let length: usize = match self {
            A128GCM => 128 / 8,
            A256GCM => 256 / 8,
            _ => Err(Error::UnsupportedOperation)?,
        };

        let mut key: Vec<u8> = vec![0; length];
        rng().fill(&mut key)?;
        Ok(key)
    }

    /// Encrypt some payload with the provided algorithm
    pub fn encrypt<T: Serialize + DeserializeOwned>(
        self,
        payload: &[u8],
        aad: &[u8],
        key: &jwk::JWK<T>,
        options: &EncryptionOptions,
    ) -> Result<EncryptionResult, Error> {
        use self::ContentEncryptionAlgorithm::*;

        match self {
            A128GCM | A192GCM | A256GCM => self.aes_gcm_encrypt(payload, aad, key, options),
            _ => Err(Error::UnsupportedOperation),
        }
    }

    /// Decrypt some payload with the provided algorithm
    pub fn decrypt<T: Serialize + DeserializeOwned>(
        self,
        encrypted: &EncryptionResult,
        key: &jwk::JWK<T>,
    ) -> Result<Vec<u8>, Error> {
        use self::ContentEncryptionAlgorithm::*;

        match self {
            A128GCM | A192GCM | A256GCM => self.aes_gcm_decrypt(encrypted, key),
            _ => Err(Error::UnsupportedOperation),
        }
    }

    /// Generate a new random `EncryptionOptions` based on the algorithm
    pub(crate) fn random_encryption_options(self) -> Result<EncryptionOptions, Error> {
        use self::ContentEncryptionAlgorithm::*;
        match self {
            A128GCM | A192GCM | A256GCM => Ok(EncryptionOptions::AES_GCM {
                nonce: random_aes_gcm_nonce()?,
            }),
            _ => Err(Error::UnsupportedOperation),
        }
    }

    fn aes_gcm_encrypt<T: Serialize + DeserializeOwned>(
        self,
        payload: &[u8],
        aad: &[u8],
        key: &jwk::JWK<T>,
        options: &EncryptionOptions,
    ) -> Result<EncryptionResult, Error> {
        use self::ContentEncryptionAlgorithm::*;

        let algorithm = match self {
            A128GCM => &aead::AES_128_GCM,
            A256GCM => &aead::AES_256_GCM,
            _ => Err(Error::UnsupportedOperation)?,
        };

        let nonce = match *options {
            EncryptionOptions::AES_GCM { ref nonce } => Ok(nonce),
            ref others => Err(unexpected_encryption_options_error!(
                AES_GCM_ZEROED_NONCE,
                others
            )),
        }?;
        // FIXME: Should we check the nonce length here or leave it to ring?

        aes_gcm_encrypt(algorithm, payload, nonce.as_slice(), aad, key)
    }

    fn aes_gcm_decrypt<T: Serialize + DeserializeOwned>(
        self,
        encrypted: &EncryptionResult,
        key: &jwk::JWK<T>,
    ) -> Result<Vec<u8>, Error> {
        use self::ContentEncryptionAlgorithm::*;

        let algorithm = match self {
            A128GCM => &aead::AES_128_GCM,
            A256GCM => &aead::AES_256_GCM,
            _ => Err(Error::UnsupportedOperation)?,
        };
        aes_gcm_decrypt(algorithm, encrypted, key)
    }
}

/// Return a pseudo random number generator
pub(crate) fn rng() -> &'static SystemRandom {
    use std::ops::Deref;

    static RANDOM: Lazy<SystemRandom> = Lazy::new(SystemRandom::new);

    RANDOM.deref()
}

/// Encrypt a payload with AES GCM
fn aes_gcm_encrypt<T: Serialize + DeserializeOwned>(
    algorithm: &'static aead::Algorithm,
    payload: &[u8],
    nonce: &[u8],
    aad: &[u8],
    key: &jwk::JWK<T>,
) -> Result<EncryptionResult, Error> {
    // JWA needs a 128 bit tag length. We need to assert that the algorithm has 128 bit tag length
    assert_eq!(algorithm.tag_len(), AES_GCM_TAG_SIZE);
    // Also the nonce (or initialization vector) needs to be 96 bits
    assert_eq!(algorithm.nonce_len(), AES_GCM_NONCE_LENGTH);

    let key = key.algorithm.octet_key()?;
    let key = aead::UnboundKey::new(algorithm, key)?;
    let sealing_key = aead::LessSafeKey::new(key);

    let mut in_out: Vec<u8> = payload.to_vec();
    let tag = sealing_key.seal_in_place_separate_tag(
        aead::Nonce::try_assume_unique_for_key(nonce)?,
        aead::Aad::from(aad),
        &mut in_out,
    )?;

    Ok(EncryptionResult {
        nonce: nonce.to_vec(),
        encrypted: in_out,
        tag: tag.as_ref().to_vec(),
        additional_data: aad.to_vec(),
    })
}

/// Decrypts a payload with AES GCM
fn aes_gcm_decrypt<T: Serialize + DeserializeOwned>(
    algorithm: &'static aead::Algorithm,
    encrypted: &EncryptionResult,
    key: &jwk::JWK<T>,
) -> Result<Vec<u8>, Error> {
    // JWA needs a 128 bit tag length. We need to assert that the algorithm has 128 bit tag length
    assert_eq!(algorithm.tag_len(), AES_GCM_TAG_SIZE);
    // Also the nonce (or initialization vector) needs to be 96 bits
    assert_eq!(algorithm.nonce_len(), AES_GCM_NONCE_LENGTH);

    let key = key.algorithm.octet_key()?;
    let key = aead::UnboundKey::new(algorithm, key)?;
    let opening_key = aead::LessSafeKey::new(key);

    let mut in_out = encrypted.encrypted.to_vec();
    in_out.append(&mut encrypted.tag.to_vec());

    let plaintext = opening_key.open_in_place(
        aead::Nonce::try_assume_unique_for_key(&encrypted.nonce)?,
        aead::Aad::from(&encrypted.additional_data),
        &mut in_out,
    )?;
    Ok(plaintext.to_vec())
}

pub(crate) fn random_aes_gcm_nonce() -> Result<Vec<u8>, Error> {
    let mut nonce: Vec<u8> = vec![0; AES_GCM_NONCE_LENGTH];
    rng().fill(&mut nonce)?;
    Ok(nonce)
}

#[cfg(test)]
mod tests {
    use ring::constant_time::verify_slices_are_equal;

    use super::*;
    use crate::jwa;
    use crate::CompactPart;

    #[test]
    fn sign_and_verify_none() {
        let expected_signature: Vec<u8> = vec![];
        let actual_signature = not_err!(
            SignatureAlgorithm::None.sign("payload".to_string().as_bytes(), &Secret::None,)
        );
        assert_eq!(expected_signature, actual_signature);

        not_err!(SignatureAlgorithm::None.verify(
            vec![].as_slice(),
            "payload".to_string().as_bytes(),
            &Secret::None
        ));
    }

    #[test]
    fn sign_and_verify_hs256() {
        let expected_base64 = "uC_LeRrOxXhZuYm0MKgmSIzi5Hn9-SMmvQoug3WkK6Q";
        let expected_bytes: Vec<u8> = not_err!(CompactPart::from_base64(&expected_base64));

        let actual_signature = not_err!(SignatureAlgorithm::HS256.sign(
            "payload".to_string().as_bytes(),
            &Secret::bytes_from_str("secret"),
        ));
        assert_eq!(&*not_err!(actual_signature.to_base64()), expected_base64);

        not_err!(SignatureAlgorithm::HS256.verify(
            expected_bytes.as_slice(),
            "payload".to_string().as_bytes(),
            &Secret::bytes_from_str("secret"),
        ));
    }

    /// To generate the signature, use
    ///
    /// ```sh
    /// echo -n "payload" | openssl dgst -sha256 -sign test/fixtures/rsa_private_key.pem | base64
    /// ```
    ///
    /// The base64 encoding from this command will be in `STANDARD` form and not URL_SAFE.
    #[test]
    fn sign_and_verify_rs256() {
        let private_key =
            Secret::rsa_keypair_from_file("test/fixtures/rsa_private_key.der").unwrap();
        let payload = "payload".to_string();
        let payload_bytes = payload.as_bytes();
        // This is standard base64
        let expected_signature =
            "JIHqiBfUknrFPDLT0gxyoufD06S43ZqWN_PzQqHZqQ-met7kZmkSTYB_rUyotLMxlKkuXdnvKmWm\
             dwGAHWEwDvb5392pCmAAtmUIl6LormxJptWYb2PoF5jmtX_lwV8y4RYIh54Ai51162VARQCKAsxL\
             uH772MEChkcpjd31NWzaePWoi_IIk11iqy6uFWmbLLwzD_Vbpl2C6aHR3vQjkXZi05gA3zksjYAh\
             j-m7GgBt0UFOE56A4USjhQwpb4g3NEamgp51_kZ2ULi4Aoo_KJC6ynIm_pR6rEzBgwZjlCUnE-6o\
             5RPQZ8Oau03UDVH2EwZe-Q91LaWRvkKjGg5Tcw";
        let expected_signature_bytes: Vec<u8> =
            not_err!(CompactPart::from_base64(&expected_signature));

        let actual_signature =
            not_err!(SignatureAlgorithm::RS256.sign(payload_bytes, &private_key));
        assert_eq!(&*not_err!(actual_signature.to_base64()), expected_signature);

        let public_key = Secret::public_key_from_file("test/fixtures/rsa_public_key.der").unwrap();
        not_err!(SignatureAlgorithm::RS256.verify(
            expected_signature_bytes.as_slice(),
            payload_bytes,
            &public_key,
        ));
    }

    #[test]
    fn sign_and_verify_rs256_key_params() {
        use num_bigint::BigUint;
        // There is no way in Ring right now to get these values from the key
        let params = Secret::RSAModulusExponent {
            n: BigUint::parse_bytes(
                b"D57336432EDB91A0A98E3BC2959C08D79017CBDF7AEA6EDCDEC611DA746E1\
                                      DBD144FB4391163E797FB392C438CC70AEA89796D8FCFF69646655AD02E00\
                                      169B5F1C4C9150D3399D80DCE6D8F6F057B105F5FC5EE774B0A8FF20A67D8\
                                      0E6707D380462D2CDCB913E6EE9EA7585CD504AE45B6930BC713D02999E36\
                                      BF449CFFA2385374F3850819056207880A2E8BA47EE8A86CBE4C361D6D54B\
                                      95F2E1668262F79C2774D4234B8D5C6D15A0E95493E308AA98F002A78BB92\
                                      8CB78F1E7E06243AB6D7EAFAB59F6446774B0479F6593F88F763978F14EFB\
                                      7F422B4C66E8EB53FF5E6DC4D3C92952D8413E06E2D9EB1DF50D8224FF3BD\
                                      319FF5E4258D06C578B9527B",
                16,
            )
            .unwrap(),
            e: BigUint::from(65537u32),
        };
        let payload = "payload".to_string();
        let payload_bytes = payload.as_bytes();
        let expected_signature =
            "JIHqiBfUknrFPDLT0gxyoufD06S43ZqWN_PzQqHZqQ-met7kZmkSTYB_rUyotLMxlKkuXdnvKmWm\
             dwGAHWEwDvb5392pCmAAtmUIl6LormxJptWYb2PoF5jmtX_lwV8y4RYIh54Ai51162VARQCKAsxL\
             uH772MEChkcpjd31NWzaePWoi_IIk11iqy6uFWmbLLwzD_Vbpl2C6aHR3vQjkXZi05gA3zksjYAh\
             j-m7GgBt0UFOE56A4USjhQwpb4g3NEamgp51_kZ2ULi4Aoo_KJC6ynIm_pR6rEzBgwZjlCUnE-6o\
             5RPQZ8Oau03UDVH2EwZe-Q91LaWRvkKjGg5Tcw";
        let expected_signature_bytes: Vec<u8> =
            not_err!(CompactPart::from_base64(&expected_signature));
        not_err!(SignatureAlgorithm::RS256.verify(
            expected_signature_bytes.as_slice(),
            payload_bytes,
            &params,
        ));
    }

    /// This signature is non-deterministic.
    #[test]
    fn sign_and_verify_ps256_round_trip() {
        let private_key =
            Secret::rsa_keypair_from_file("test/fixtures/rsa_private_key.der").unwrap();
        let payload = "payload".to_string();
        let payload_bytes = payload.as_bytes();

        let actual_signature =
            not_err!(SignatureAlgorithm::PS256.sign(payload_bytes, &private_key));

        let public_key = Secret::public_key_from_file("test/fixtures/rsa_public_key.der").unwrap();
        not_err!(SignatureAlgorithm::PS256.verify(
            actual_signature.as_slice(),
            payload_bytes,
            &public_key,
        ));
    }

    /// This signature is non-deterministic.
    #[test]
    fn sign_and_verify_ps256_round_trip_with_keypair() {
        let key = Secret::rsa_keypair_from_file("test/fixtures/rsa_private_key.der").unwrap();
        let payload = "payload".to_string();
        let payload_bytes = payload.as_bytes();

        let actual_signature = not_err!(SignatureAlgorithm::PS256.sign(payload_bytes, &key));

        not_err!(SignatureAlgorithm::PS256.verify(
            actual_signature.as_slice(),
            payload_bytes,
            &key,
        ));
    }

    /// To generate a (non-deterministic) signature:
    ///
    /// ```sh
    /// echo -n "payload" | openssl dgst -sha256 -sigopt rsa_padding_mode:pss -sigopt rsa_pss_saltlen:-1 \
    ///    -sign test/fixtures/rsa_private_key.pem | base64
    /// ```
    ///
    /// The base64 encoding from this command will be in `STANDARD` form and not URL_SAFE.
    #[test]
    fn verify_ps256() {
        use data_encoding::BASE64;

        let payload = "payload".to_string();
        let payload_bytes = payload.as_bytes();
        let signature =
            "TiMXtt3Wmv/a/tbLWuJPDlFYMfuKsD7U5lbBUn2mBu8DLMLj1EplEZNmkB8w65BgUijnu9hxmhwv\
             ET2k7RrsYamEst6BHZf20hIK1yE/YWaktbVmAZwUDdIpXYaZn8ukTsMT06CDrVk6RXF0EPMaSL33\
             tFNPZpz4/3pYQdxco/n6DpaR5206wsur/8H0FwoyiFKanhqLb1SgZqyc+SXRPepjKc28wzBnfWl4\
             mmlZcJ2xk8O2/t1Y1/m/4G7drBwOItNl7EadbMVCetYnc9EILv39hjcL9JvaA9q0M2RB75DIu8SF\
             9Kr/l+wzUJjWAHthgqSBpe15jLkpO8tvqR89fw==";
        let signature_bytes: Vec<u8> = not_err!(BASE64.decode(signature.as_bytes()));
        let public_key = Secret::public_key_from_file("test/fixtures/rsa_public_key.der").unwrap();
        not_err!(SignatureAlgorithm::PS256.verify(
            signature_bytes.as_slice(),
            payload_bytes,
            &public_key,
        ));
    }

    /// This signature is non-deterministic.
    #[test]
    fn sign_and_verify_es256_round_trip() {
        let private_key = Secret::ecdsa_keypair_from_file(
            SignatureAlgorithm::ES256,
            "test/fixtures/ecdsa_private_key.p8",
        )
        .unwrap();
        let payload = "payload".to_string();
        let payload_bytes = payload.as_bytes();

        let actual_signature =
            not_err!(SignatureAlgorithm::ES256.sign(payload_bytes, &private_key));

        let public_key =
            Secret::public_key_from_file("test/fixtures/ecdsa_public_key.der").unwrap();
        not_err!(SignatureAlgorithm::ES256.verify(
            actual_signature.as_slice(),
            payload_bytes,
            &public_key,
        ));
    }

    /// This signature is non-deterministic.
    #[test]
    fn sign_and_verify_es256_round_trip_with_keypair() {
        let key = Secret::ecdsa_keypair_from_file(
            SignatureAlgorithm::ES256,
            "test/fixtures/ecdsa_private_key.p8",
        )
        .unwrap();
        let payload = "payload".to_string();
        let payload_bytes = payload.as_bytes();

        let actual_signature = not_err!(SignatureAlgorithm::ES256.sign(payload_bytes, &key));

        not_err!(SignatureAlgorithm::ES256.verify(
            actual_signature.as_slice(),
            payload_bytes,
            &key,
        ));
    }

    /// Test case from https://github.com/briansmith/ring/blob/a13b8e2/src/ec/suite_b/ecdsa_verify_fixed_tests.txt
    #[test]
    fn verify_es256() {
        use data_encoding::HEXUPPER;

        let payload_bytes = Vec::<u8>::new();
        let public_key = "0430345FD47EA21A11129BE651B0884BFAC698377611ACC9F689458E13B9ED7D4B9D7599\
                          A68DCF125E7F31055CCB374CD04F6D6FD2B217438A63F6F667D50EF2F0";
        let public_key = Secret::PublicKey(not_err!(HEXUPPER.decode(public_key.as_bytes())));
        let signature = "341F6779B75E98BB42E01095DD48356CBF9002DC704AC8BD2A8240B88D3796C6555843B1B\
                         4E264FE6FFE6E2B705A376C05C09404303FFE5D2711F3E3B3A010A1";
        let signature_bytes: Vec<u8> = not_err!(HEXUPPER.decode(signature.as_bytes()));
        not_err!(SignatureAlgorithm::ES256.verify(
            signature_bytes.as_slice(),
            &payload_bytes,
            &public_key,
        ));
    }

    /// Test case from https://github.com/briansmith/ring/blob/a13b8e2/src/ec/suite_b/ecdsa_verify_fixed_tests.txt
    #[test]
    fn verify_es384() {
        use data_encoding::HEXUPPER;

        let payload_bytes = Vec::<u8>::new();
        let public_key = "045C5E788A805C77D34128B8401CB59B2373B8B468336C9318252BF39FD31D2507557987\
                          A5180A9435F9FB8EB971C426F1C485170DCB18FB688A257F89387A09FC4C5B8BD4B320616\
                          B54A0A7B1D1D7C6A0C59F6DFF78C78AD4E3D6FCA9C9A17B96";
        let public_key = Secret::PublicKey(not_err!(HEXUPPER.decode(public_key.as_bytes())));
        let signature = "85AC708D4B0126BAC1F5EEEBDF911409070A286FDDE5649582611B60046DE353761660DD0\
                         3903F58B44148F25142EEF8183475EC1F1392F3D6838ABC0C01724709C446888BED7F2CE4\
                         642C6839DC18044A2A6AB9DDC960BFAC79F6988E62D452";
        let signature_bytes: Vec<u8> = not_err!(HEXUPPER.decode(signature.as_bytes()));
        not_err!(SignatureAlgorithm::ES384.verify(
            signature_bytes.as_slice(),
            &payload_bytes,
            &public_key,
        ));
    }

    #[test]
    #[should_panic(expected = "UnsupportedOperation")]
    fn verify_es512() {
        let payload: Vec<u8> = vec![];
        let signature: Vec<u8> = vec![];
        let public_key = Secret::PublicKey(vec![]);
        SignatureAlgorithm::ES512
            .verify(signature.as_slice(), payload.as_slice(), &public_key)
            .unwrap();
    }

    #[test]
    #[should_panic(expected = "UnspecifiedCryptographicError")]
    fn invalid_none() {
        let invalid_signature = "broken".to_string();
        let signature_bytes = invalid_signature.as_bytes();
        SignatureAlgorithm::None
            .verify(
                signature_bytes,
                "payload".to_string().as_bytes(),
                &Secret::None,
            )
            .unwrap();
    }

    #[test]
    #[should_panic(expected = "UnspecifiedCryptographicError")]
    fn invalid_hs256() {
        let invalid_signature = "broken".to_string();
        let signature_bytes = invalid_signature.as_bytes();
        SignatureAlgorithm::HS256
            .verify(
                signature_bytes,
                "payload".to_string().as_bytes(),
                &Secret::Bytes("secret".to_string().into_bytes()),
            )
            .unwrap();
    }

    #[test]
    #[should_panic(expected = "UnspecifiedCryptographicError")]
    fn invalid_rs256() {
        let public_key = Secret::public_key_from_file("test/fixtures/rsa_public_key.der").unwrap();
        let invalid_signature = "broken".to_string();
        let signature_bytes = invalid_signature.as_bytes();
        SignatureAlgorithm::RS256
            .verify(
                signature_bytes,
                "payload".to_string().as_bytes(),
                &public_key,
            )
            .unwrap();
    }

    #[test]
    #[should_panic(expected = "UnspecifiedCryptographicError")]
    fn invalid_ps256() {
        let public_key = Secret::public_key_from_file("test/fixtures/rsa_public_key.der").unwrap();
        let invalid_signature = "broken".to_string();
        let signature_bytes = invalid_signature.as_bytes();
        SignatureAlgorithm::PS256
            .verify(
                signature_bytes,
                "payload".to_string().as_bytes(),
                &public_key,
            )
            .unwrap();
    }

    #[test]
    #[should_panic(expected = "UnspecifiedCryptographicError")]
    fn invalid_es256() {
        let public_key = Secret::public_key_from_file("test/fixtures/rsa_public_key.der").unwrap();
        let invalid_signature = "broken".to_string();
        let signature_bytes = invalid_signature.as_bytes();
        SignatureAlgorithm::ES256
            .verify(
                signature_bytes,
                "payload".to_string().as_bytes(),
                &public_key,
            )
            .unwrap();
    }

    #[test]
    fn rng_is_created() {
        let rng = rng();
        let mut random: Vec<u8> = vec![0; 8];
        rng.fill(&mut random).unwrap();
    }

    #[test]
    fn aes_gcm_128_encryption_round_trip_fixed_key_nonce() {
        const PAYLOAD: &str = "这个世界值得我们奋战!";
        let key: Vec<u8> = vec![0; 128 / 8];

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let encrypted = not_err!(aes_gcm_encrypt(
            &aead::AES_128_GCM,
            PAYLOAD.as_bytes(),
            &[0; AES_GCM_NONCE_LENGTH],
            &[],
            &key,
        ));
        let decrypted = not_err!(aes_gcm_decrypt(&aead::AES_128_GCM, &encrypted, &key));

        let payload = not_err!(String::from_utf8(decrypted));
        assert_eq!(payload, PAYLOAD);
    }

    #[test]
    fn aes_gcm_128_encryption_round_trip() {
        const PAYLOAD: &str = "这个世界值得我们奋战!";
        let mut key: Vec<u8> = vec![0; 128 / 8];
        not_err!(rng().fill(&mut key));

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let encrypted = not_err!(aes_gcm_encrypt(
            &aead::AES_128_GCM,
            PAYLOAD.as_bytes(),
            &random_aes_gcm_nonce().unwrap(),
            &[],
            &key,
        ));
        let decrypted = not_err!(aes_gcm_decrypt(&aead::AES_128_GCM, &encrypted, &key));

        let payload = not_err!(String::from_utf8(decrypted));
        assert_eq!(payload, PAYLOAD);
    }

    #[test]
    fn aes_gcm_256_encryption_round_trip() {
        const PAYLOAD: &str = "这个世界值得我们奋战!";
        let mut key: Vec<u8> = vec![0; 256 / 8];
        not_err!(rng().fill(&mut key));

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let encrypted = not_err!(aes_gcm_encrypt(
            &aead::AES_256_GCM,
            PAYLOAD.as_bytes(),
            &random_aes_gcm_nonce().unwrap(),
            &[],
            &key,
        ));
        let decrypted = not_err!(aes_gcm_decrypt(&aead::AES_256_GCM, &encrypted, &key));

        let payload = not_err!(String::from_utf8(decrypted));
        assert_eq!(payload, PAYLOAD);
    }

    #[test]
    fn aes_gcm_256_encryption_round_trip_fixed_key_nonce() {
        const PAYLOAD: &str = "这个世界值得我们奋战!";
        let key: Vec<u8> = vec![0; 256 / 8];

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let encrypted = not_err!(aes_gcm_encrypt(
            &aead::AES_256_GCM,
            PAYLOAD.as_bytes(),
            &[0; AES_GCM_NONCE_LENGTH],
            &[],
            &key,
        ));
        let decrypted = not_err!(aes_gcm_decrypt(&aead::AES_256_GCM, &encrypted, &key));

        let payload = not_err!(String::from_utf8(decrypted));
        assert_eq!(payload, PAYLOAD);
    }

    /// `KeyManagementAlgorithm::DirectSymmetricKey` returns the same key when CEK is requested
    #[test]
    fn dir_cek_returns_provided_key() {
        let mut key: Vec<u8> = vec![0; 256 / 8];
        not_err!(rng().fill(&mut key));

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let cek_alg = KeyManagementAlgorithm::DirectSymmetricKey;
        let cek = not_err!(cek_alg.cek(jwa::ContentEncryptionAlgorithm::A256GCM, &key));

        assert!(
            verify_slices_are_equal(cek.octet_key().unwrap(), key.octet_key().unwrap()).is_ok()
        );
    }

    /// `KeyManagementAlgorithm::A128GCMKW` returns a random key with the right length when CEK is requested
    #[test]
    fn cek_aes128gcmkw_returns_right_key_length() {
        let mut key: Vec<u8> = vec![0; 128 / 8];
        not_err!(rng().fill(&mut key));

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let cek_alg = KeyManagementAlgorithm::A128GCMKW;
        let cek = not_err!(cek_alg.cek(jwa::ContentEncryptionAlgorithm::A128GCM, &key));
        assert_eq!(cek.octet_key().unwrap().len(), 128 / 8);
        assert!(
            verify_slices_are_equal(cek.octet_key().unwrap(), key.octet_key().unwrap()).is_err()
        );

        let cek = not_err!(cek_alg.cek(jwa::ContentEncryptionAlgorithm::A256GCM, &key));
        assert_eq!(cek.octet_key().unwrap().len(), 256 / 8);
        assert!(
            verify_slices_are_equal(cek.octet_key().unwrap(), key.octet_key().unwrap()).is_err()
        );
    }

    /// `KeyManagementAlgorithm::A256GCMKW` returns a random key with the right length when CEK is requested
    #[test]
    fn cek_aes256gcmkw_returns_right_key_length() {
        let mut key: Vec<u8> = vec![0; 256 / 8];
        not_err!(rng().fill(&mut key));

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let cek_alg = KeyManagementAlgorithm::A256GCMKW;
        let cek = not_err!(cek_alg.cek(jwa::ContentEncryptionAlgorithm::A128GCM, &key));
        assert_eq!(cek.octet_key().unwrap().len(), 128 / 8);
        assert!(
            verify_slices_are_equal(cek.octet_key().unwrap(), key.octet_key().unwrap()).is_err()
        );

        let cek = not_err!(cek_alg.cek(jwa::ContentEncryptionAlgorithm::A256GCM, &key));
        assert_eq!(cek.octet_key().unwrap().len(), 256 / 8);
        assert!(
            verify_slices_are_equal(cek.octet_key().unwrap(), key.octet_key().unwrap()).is_err()
        );
    }

    #[test]
    fn aes128gcmkw_key_encryption_round_trip() {
        let mut key: Vec<u8> = vec![0; 128 / 8];
        not_err!(rng().fill(&mut key));

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let options = EncryptionOptions::AES_GCM {
            nonce: random_aes_gcm_nonce().unwrap(),
        };

        let cek_alg = KeyManagementAlgorithm::A128GCMKW;
        let enc_alg = jwa::ContentEncryptionAlgorithm::A128GCM; // determines the CEK
        let cek = not_err!(cek_alg.cek(enc_alg, &key));

        let encrypted_cek = not_err!(cek_alg.wrap_key(cek.octet_key().unwrap(), &key, &options));
        let decrypted_cek = not_err!(cek_alg.unwrap_key(&encrypted_cek, enc_alg, &key));

        assert!(verify_slices_are_equal(
            cek.octet_key().unwrap(),
            decrypted_cek.octet_key().unwrap(),
        )
        .is_ok());
    }

    #[test]
    fn aes256gcmkw_key_encryption_round_trip() {
        let mut key: Vec<u8> = vec![0; 256 / 8];
        not_err!(rng().fill(&mut key));

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let options = EncryptionOptions::AES_GCM {
            nonce: random_aes_gcm_nonce().unwrap(),
        };

        let cek_alg = KeyManagementAlgorithm::A256GCMKW;
        let enc_alg = jwa::ContentEncryptionAlgorithm::A128GCM; // determines the CEK
        let cek = not_err!(cek_alg.cek(enc_alg, &key));

        let encrypted_cek = not_err!(cek_alg.wrap_key(cek.octet_key().unwrap(), &key, &options));
        let decrypted_cek = not_err!(cek_alg.unwrap_key(&encrypted_cek, enc_alg, &key));

        assert!(verify_slices_are_equal(
            cek.octet_key().unwrap(),
            decrypted_cek.octet_key().unwrap(),
        )
        .is_ok());
    }

    /// `ContentEncryptionAlgorithm::A128GCM` generates CEK of the right length
    #[test]
    fn aes128gcm_key_length() {
        let enc_alg = jwa::ContentEncryptionAlgorithm::A128GCM;
        let cek = not_err!(enc_alg.generate_key());
        assert_eq!(cek.len(), 128 / 8);
    }

    /// `ContentEncryptionAlgorithm::A256GCM` generates CEK of the right length
    #[test]
    fn aes256gcm_key_length() {
        let enc_alg = jwa::ContentEncryptionAlgorithm::A256GCM;
        let cek = not_err!(enc_alg.generate_key());
        assert_eq!(cek.len(), 256 / 8);
    }

    #[test]
    fn aes128gcm_encryption_round_trip() {
        let mut key: Vec<u8> = vec![0; 128 / 8];
        not_err!(rng().fill(&mut key));

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let options = EncryptionOptions::AES_GCM {
            nonce: random_aes_gcm_nonce().unwrap(),
        };

        let payload = "狼よ、我が敵を食らえ!";
        let aad = "My servants never die!";
        let enc_alg = jwa::ContentEncryptionAlgorithm::A128GCM;
        let encrypted_payload =
            not_err!(enc_alg.encrypt(payload.as_bytes(), aad.as_bytes(), &key, &options,));

        let decrypted_payload = not_err!(enc_alg.decrypt(&encrypted_payload, &key));
        assert!(verify_slices_are_equal(payload.as_bytes(), &decrypted_payload).is_ok());
    }

    #[test]
    fn aes1256gcm_encryption_round_trip() {
        let mut key: Vec<u8> = vec![0; 256 / 8];
        not_err!(rng().fill(&mut key));

        let key = jwk::JWK::<Empty> {
            common: Default::default(),
            additional: Default::default(),
            algorithm: jwk::AlgorithmParameters::OctetKey(jwk::OctetKeyParameters {
                key_type: Default::default(),
                value: key,
            }),
        };

        let options = EncryptionOptions::AES_GCM {
            nonce: random_aes_gcm_nonce().unwrap(),
        };

        let payload = "狼よ、我が敵を食らえ!";
        let aad = "My servants never die!";
        let enc_alg = jwa::ContentEncryptionAlgorithm::A256GCM;
        let encrypted_payload =
            not_err!(enc_alg.encrypt(payload.as_bytes(), aad.as_bytes(), &key, &options,));

        let decrypted_payload = not_err!(enc_alg.decrypt(&encrypted_payload, &key));
        assert!(verify_slices_are_equal(payload.as_bytes(), &decrypted_payload).is_ok());
    }
}