1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
//! AST definitions for converting untyped syntax nodes into typed AST nodes.
//!
//! Every field of every AST node is optional, this is to allow the parser to recover
//! from any error and produce an ast from any source code. If you don't want to account for
//! optionals for everything, you can use ...
use biome_text_size::TextRange;
#[cfg(feature = "serde")]
use serde::Serialize;
use std::error::Error;
use std::fmt::{self, Debug, Display, Formatter};
use std::iter::FusedIterator;
use std::marker::PhantomData;
mod batch;
mod mutation;
use crate::syntax::{SyntaxSlot, SyntaxSlots};
use crate::{
Language, RawSyntaxKind, SyntaxKind, SyntaxList, SyntaxNode, SyntaxToken, SyntaxTriviaPiece,
};
pub use batch::*;
pub use mutation::{AstNodeExt, AstNodeListExt, AstSeparatedListExt};
/// Represents a set of [SyntaxKind] as a bitfield, with each bit representing
/// whether the corresponding [RawSyntaxKind] value is contained in the set
///
/// This is similar to the `TokenSet` struct in `biome_js_parser`, with the
/// bitfield here being twice as large as it needs to cover all nodes as well
/// as all token kinds
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct SyntaxKindSet<L: ?Sized + Language>([u128; 4], PhantomData<L>);
impl<L> SyntaxKindSet<L>
where
L: Language,
{
/// Create a new [SyntaxKindSet] containing only the provided [SyntaxKind]
pub fn of(kind: L::Kind) -> Self {
Self::from_raw(kind.to_raw())
}
/// Create a new [SyntaxKindSet] containing only the provided [RawSyntaxKind]
///
/// Unlike `SyntaxKindSet::of` this function can be evaluated in constants,
/// and will result in a compile-time error if the value overflows:
///
/// ```compile_fail
/// # use biome_rowan::{SyntaxKindSet, RawSyntaxKind, raw_language::RawLanguage};
/// const EXAMPLE: SyntaxKindSet<RawLanguage> =
/// SyntaxKindSet::<RawLanguage>::from_raw(RawSyntaxKind(512));
/// # println!("{EXAMPLE:?}"); // The constant must be used to be evaluated
/// ```
pub const fn from_raw(kind: RawSyntaxKind) -> Self {
let RawSyntaxKind(kind) = kind;
let index = kind as usize / u128::BITS as usize;
let shift = kind % u128::BITS as u16;
let mask = 1 << shift;
let mut bits = [0; 4];
bits[index] = mask;
Self(bits, PhantomData)
}
/// Returns the union of the two sets `self` and `other`
pub const fn union(self, other: Self) -> Self {
Self(
[
self.0[0] | other.0[0],
self.0[1] | other.0[1],
self.0[2] | other.0[2],
self.0[3] | other.0[3],
],
PhantomData,
)
}
/// Returns true if `kind` is contained in this set
pub fn matches(self, kind: L::Kind) -> bool {
let RawSyntaxKind(kind) = kind.to_raw();
let index = kind as usize / u128::BITS as usize;
let shift = kind % u128::BITS as u16;
let mask = 1 << shift;
self.0[index] & mask != 0
}
/// Returns an iterator over all the [SyntaxKind] contained in this set
pub fn iter(self) -> impl Iterator<Item = L::Kind> {
self.0.into_iter().enumerate().flat_map(|(index, item)| {
let index = index as u16 * u128::BITS as u16;
(0..u128::BITS).filter_map(move |bit| {
if (item & (1 << bit)) != 0 {
let raw = index + bit as u16;
let raw = RawSyntaxKind(raw);
Some(<L::Kind as SyntaxKind>::from_raw(raw))
} else {
None
}
})
})
}
}
/// The main trait to go from untyped `SyntaxNode` to a typed ast. The
/// conversion itself has zero runtime cost: ast and syntax nodes have exactly
/// the same representation: a pointer to the tree root and a pointer to the
/// node itself.
///
/// The only exception to this is for Dynamic nodes, which allow the fields
/// of the AstNode to be mapped to any slot of the SyntaxNode using an additional
/// `slot_map`. This must get built every time the untyped syntax node is
/// converted into the typed ast node, and is determined by the order of fields
/// in the original grammar. Even still, this cost is relatively low and should
/// not be considered prohibitive, as the only work done is checking
/// [AstNode::can_cast] for each of the children to their respective slots.
pub trait AstNode: Clone {
type Language: Language;
const KIND_SET: SyntaxKindSet<Self::Language>;
/// Returns `true` if a node with the given kind can be cased to this AST node.
fn can_cast(kind: <Self::Language as Language>::Kind) -> bool;
/// Tries to cast the passed syntax node to this AST node.
///
/// # Returns
///
/// [None] if the passed node is of a different kind. [Some] otherwise.
fn cast(syntax: SyntaxNode<Self::Language>) -> Option<Self>
where
Self: Sized;
/// Takes a reference of a syntax node and tries to cast it to this AST node.
///
/// Only creates a clone of the syntax node if casting the node is possible.
fn cast_ref(syntax: &SyntaxNode<Self::Language>) -> Option<Self>
where
Self: Sized,
{
if Self::can_cast(syntax.kind()) {
Self::cast(syntax.clone())
} else {
None
}
}
/// Tries to cast the passed syntax node to this AST node.
///
/// # Returns
/// * [Ok] if the passed node can be cast into this [AstNode]
/// * [Err(syntax)](Err) If the node is of another kind.
///
/// # Examples
///
/// ```
/// # use biome_rowan::AstNode;
/// # use biome_rowan::raw_language::{LiteralExpression, RawLanguageKind, RawLanguageRoot, RawSyntaxTreeBuilder};
///
/// let mut builder = RawSyntaxTreeBuilder::new();
///
/// builder.start_node(RawLanguageKind::ROOT);
/// builder.start_node(RawLanguageKind::LITERAL_EXPRESSION);
/// builder.token(RawLanguageKind::STRING_TOKEN, "'abcd'");
/// builder.finish_node();
/// builder.finish_node();
///
/// let root_syntax = builder.finish();
/// let root = RawLanguageRoot::cast(root_syntax.clone()).expect("Root to be a raw language root");
///
/// // Returns `OK` because syntax is a `RawLanguageRoot`
/// assert_eq!(RawLanguageRoot::try_cast(root.syntax().clone()), Ok(root.clone()));
/// // Returns `Err` with the syntax node passed to `try_cast` because `root` isn't a `LiteralExpression`
/// assert_eq!(LiteralExpression::try_cast(root.syntax().clone()), Err(root_syntax));
/// ```
fn try_cast(syntax: SyntaxNode<Self::Language>) -> Result<Self, SyntaxNode<Self::Language>> {
if Self::can_cast(syntax.kind()) {
Ok(Self::cast(syntax).expect("Expected casted node because 'can_cast' returned true."))
} else {
Err(syntax)
}
}
/// Tries to cast the AST `node` into this node.
///
/// # Returns
/// * [Ok] if the passed node can be cast into this [AstNode]
/// * [Err] if the node is of another kind
/// ```
/// # use biome_rowan::AstNode;
/// # use biome_rowan::raw_language::{LiteralExpression, RawLanguageKind, RawLanguageRoot, RawSyntaxTreeBuilder};
///
/// let mut builder = RawSyntaxTreeBuilder::new();
///
/// builder.start_node(RawLanguageKind::ROOT);
/// builder.start_node(RawLanguageKind::LITERAL_EXPRESSION);
/// builder.token(RawLanguageKind::STRING_TOKEN, "'abcd'");
/// builder.finish_node();
/// builder.finish_node();
///
/// let root_syntax = builder.finish();
/// let root = RawLanguageRoot::cast(root_syntax.clone()).expect("Root to be a raw language root");
///
/// // Returns `OK` because syntax is a `RawLanguageRoot`
/// assert_eq!(RawLanguageRoot::try_cast_node(root.clone()), Ok(root.clone()));
///
/// // Returns `Err` with the node passed to `try_cast_node` because `root` isn't a `LiteralExpression`
/// assert_eq!(LiteralExpression::try_cast_node(root.clone()), Err(root.clone()));
/// ```
fn try_cast_node<T: AstNode<Language = Self::Language>>(node: T) -> Result<Self, T> {
if Self::can_cast(node.syntax().kind()) {
Ok(Self::cast(node.into_syntax())
.expect("Expected casted node because 'can_cast' returned true."))
} else {
Err(node)
}
}
/// Returns the underlying syntax node.
fn syntax(&self) -> &SyntaxNode<Self::Language>;
/// Returns the underlying syntax node.
fn into_syntax(self) -> SyntaxNode<Self::Language>;
/// Cast this node to this AST node
///
/// # Panics
/// Panics if the underlying node cannot be cast to this AST node
fn unwrap_cast(syntax: SyntaxNode<Self::Language>) -> Self
where
Self: Sized,
{
let kind = syntax.kind();
Self::cast(syntax).unwrap_or_else(|| {
panic!(
"Tried to cast node with kind {:?} as `{:?}` but was unable to cast",
kind,
std::any::type_name::<Self>()
)
})
}
/// Returns the string representation of this node without the leading and trailing trivia
fn text(&self) -> std::string::String {
self.syntax().text_trimmed().to_string()
}
fn range(&self) -> TextRange {
self.syntax().text_trimmed_range()
}
fn clone_subtree(&self) -> Self
where
Self: Sized,
{
Self::cast(self.syntax().clone_subtree()).unwrap()
}
fn parent<T: AstNode<Language = Self::Language>>(&self) -> Option<T> {
self.syntax().parent().and_then(T::cast)
}
/// Return a new version of this node with the leading trivia of its first token replaced with `trivia`.
fn with_leading_trivia_pieces<I>(self, trivia: I) -> Option<Self>
where
I: IntoIterator<Item = SyntaxTriviaPiece<Self::Language>>,
I::IntoIter: ExactSizeIterator,
{
Self::cast(self.into_syntax().with_leading_trivia_pieces(trivia)?)
}
/// Return a new version of this node with the trailing trivia of its last token replaced with `trivia`.
fn with_trailing_trivia_pieces<I>(self, trivia: I) -> Option<Self>
where
I: IntoIterator<Item = SyntaxTriviaPiece<Self::Language>>,
I::IntoIter: ExactSizeIterator,
{
Self::cast(self.into_syntax().with_trailing_trivia_pieces(trivia)?)
}
// Return a new version of this node with `trivia` prepended to the leading trivia of the first token.
fn prepend_trivia_pieces<I>(self, trivia: I) -> Option<Self>
where
I: IntoIterator<Item = SyntaxTriviaPiece<Self::Language>>,
I::IntoIter: ExactSizeIterator,
{
Self::cast(self.into_syntax().prepend_trivia_pieces(trivia)?)
}
// Return a new version of this node with `trivia` appended to the trailing trivia of the last token.
fn append_trivia_pieces<I>(self, trivia: I) -> Option<Self>
where
I: IntoIterator<Item = SyntaxTriviaPiece<Self::Language>>,
I::IntoIter: ExactSizeIterator,
{
Self::cast(self.into_syntax().append_trivia_pieces(trivia)?)
}
/// Return a new version of this node without leading and trailing newlines and whitespaces.
fn trim_trivia(self) -> Option<Self> {
Self::cast(
self.into_syntax()
.trim_leading_trivia()?
.trim_trailing_trivia()?,
)
}
/// Return a new version of this node without leading newlines and whitespaces.
fn trim_leading_trivia(self) -> Option<Self> {
Self::cast(self.into_syntax().trim_leading_trivia()?)
}
/// Return a new version of this node without trailing newlines and whitespaces.
fn trim_trailing_trivia(self) -> Option<Self> {
Self::cast(self.into_syntax().trim_trailing_trivia()?)
}
}
/// An AstNode that supports dynamic ordering of the fields it contains uses a
/// `slot_map` to map the _declared_ order of fields to the _concrete_ order
/// as parsed from the source content. Implementing this trait lets consumers
///
pub trait AstNodeSlotMap<const N: usize> {
/// Return the internal slot_map that was built when constructed from the
/// underlying [SyntaxNode].
fn slot_map(&self) -> &[u8; N];
/// Invert and sort the `slot_map` for the [AstNode] to return a mapping of
/// _concrete_ field ordering from the source to the _declared_ ordering of
/// the [AstNode].
///
/// Note that the _entire_ slot map is inverted and returned, including
/// both the ordered and the unordered fields. Ordered fields will have
/// their slot positions fixed in both the original and the inverted slot
/// maps, since they can't be moved. Ordered fields also act as boundary
/// points for unordered fields, meaning the concrete order will never
/// allow the concrete slot of an unordered field to appear on the opposite
/// side of an ordered field, even if the field is empty, and the ordered
/// fields will _always_ have the same slot in both maps.
///
/// Example: Given a grammar like:
/// MultiplyVectorsNode =
/// (Color
/// || Number
/// || String)
/// 'x'
/// (Color
/// || Number
/// || String)
/// There are two sets of unordered fields here (the groups combined with
/// `||` operators). Each contains three fields, and then there is a single
/// ordered field between them, the `x` token. This Node declares a
/// `slot_map` with 7 indices. The first three can be mapped in any order,
/// and the last three can be mapped in any order, but the `x` token will
/// _always_ occupy the fourth slot (zero-based index 3).
///
/// Now, given an input like `10 "hello" #fff x "bye" #000 20`, the
/// constructed [AstNode]'s slot_map would look like
/// `[2, 0, 1, 3, 6, 4, 5]`. The first `Color` field, declared as index 0,
/// appears at the 2nd index in the concrete source, so the value at index
/// 0 is 2, and so on for the rest of the fields.
///
/// The inversion of this slot map, then, is `[1, 2, 0, 3, 5, 6, 4]`. To
/// compare these, think: the value 0 in the original `slot_map` appeared
/// at index 1, so index 0 in the inverted map has the _value_ 1, then
/// apply that for of the slots. As you can see `3` is still in the same
/// position, because it is an ordered field.
///
/// ## Optional Fields
///
/// It's also possible for unordered fields to be _optional_, meaning they
/// are not present in the concrete source. In this case, the sentinel
/// value of `255` ([`std::u8::MAX`]) is placed in the slot map. When
/// inverting the map, if a slot index cannot be found in the map, it is
/// preserved as the same sentinel value in the inverted map.
///
/// Using the same grammar as before, the input `10 x #000` is also valid,
/// but is missing many of the optional fields. The `slot_map` for this
/// node would include sentinel values for all of the missing fields, like:
/// `[255, 0, 255, 3, 4, 255, 255]`. Inverting this map would then yield:
/// `[1, 255, 255, 3, 4, 255, 255]`. Each declared slot is still
/// represented in the inverted map, but only the fields that exist in the
/// concrete source have usable values.
fn concrete_order_slot_map(&self) -> [u8; N] {
let mut inverted = [u8::MAX; N];
for (declared_slot, concrete_slot) in self.slot_map().iter().enumerate() {
if *concrete_slot != u8::MAX {
inverted[*concrete_slot as usize] = declared_slot as u8;
}
}
inverted
}
}
pub trait SyntaxNodeCast<L: Language> {
/// Tries to cast the current syntax node to specified AST node.
///
/// # Returns
///
/// [None] if the current node is of a different kind. [Some] otherwise.
fn cast<T: AstNode<Language = L>>(self) -> Option<T>;
}
impl<L: Language> SyntaxNodeCast<L> for SyntaxNode<L> {
fn cast<T: AstNode<Language = L>>(self) -> Option<T> {
T::cast(self)
}
}
/// List of homogenous nodes
pub trait AstNodeList {
type Language: Language;
type Node: AstNode<Language = Self::Language>;
/// Returns the underlying syntax list
fn syntax_list(&self) -> &SyntaxList<Self::Language>;
/// Returns the underlying syntax list
fn into_syntax_list(self) -> SyntaxList<Self::Language>;
fn iter(&self) -> AstNodeListIterator<Self::Language, Self::Node> {
AstNodeListIterator {
inner: self.syntax_list().iter(),
ph: PhantomData,
}
}
#[inline]
fn len(&self) -> usize {
self.syntax_list().len()
}
/// Returns the first node from this list or None
#[inline]
fn first(&self) -> Option<Self::Node> {
self.iter().next()
}
/// Returns the last node from this list or None
fn last(&self) -> Option<Self::Node> {
self.iter().last()
}
#[inline]
fn is_empty(&self) -> bool {
self.syntax_list().is_empty()
}
}
#[derive(Debug, Clone)]
pub struct AstNodeListIterator<L, N>
where
L: Language,
{
inner: SyntaxSlots<L>,
ph: PhantomData<N>,
}
impl<L: Language, N: AstNode<Language = L>> AstNodeListIterator<L, N> {
fn slot_to_node(slot: &SyntaxSlot<L>) -> N {
match slot {
SyntaxSlot::Empty => panic!("Node isn't permitted to contain empty slots"),
SyntaxSlot::Node(node) => N::unwrap_cast(node.clone()),
SyntaxSlot::Token(token) => panic!(
"Expected node of type `{:?}` but found token `{:?}` instead.",
std::any::type_name::<N>(),
token
),
}
}
}
impl<L: Language, N: AstNode<Language = L>> Iterator for AstNodeListIterator<L, N> {
type Item = N;
fn next(&mut self) -> Option<Self::Item> {
Some(Self::slot_to_node(&self.inner.next()?))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
fn last(self) -> Option<Self::Item>
where
Self: Sized,
{
Some(Self::slot_to_node(&self.inner.last()?))
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
Some(Self::slot_to_node(&self.inner.nth(n)?))
}
}
impl<L: Language, N: AstNode<Language = L>> ExactSizeIterator for AstNodeListIterator<L, N> {}
impl<L: Language, N: AstNode<Language = L>> FusedIterator for AstNodeListIterator<L, N> {}
impl<L: Language, N: AstNode<Language = L>> DoubleEndedIterator for AstNodeListIterator<L, N> {
fn next_back(&mut self) -> Option<Self::Item> {
Some(Self::slot_to_node(&self.inner.next_back()?))
}
}
#[derive(Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize))]
pub struct AstSeparatedElement<L: Language, N> {
pub node: SyntaxResult<N>,
pub trailing_separator: SyntaxResult<Option<SyntaxToken<L>>>,
}
impl<L: Language, N: AstNode<Language = L>> AstSeparatedElement<L, N> {
pub fn node(&self) -> SyntaxResult<&N> {
match &self.node {
Ok(node) => Ok(node),
Err(err) => Err(*err),
}
}
pub fn into_node(self) -> SyntaxResult<N> {
self.node
}
pub fn trailing_separator(&self) -> SyntaxResult<Option<&SyntaxToken<L>>> {
match &self.trailing_separator {
Ok(Some(sep)) => Ok(Some(sep)),
Ok(_) => Ok(None),
Err(err) => Err(*err),
}
}
pub fn into_trailing_separator(self) -> SyntaxResult<Option<SyntaxToken<L>>> {
self.trailing_separator
}
}
impl<L: Language, N: Debug> Debug for AstSeparatedElement<L, N> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match &self.node {
Ok(node) => N::fmt(node, f)?,
Err(_) => f.write_str("missing element")?,
};
match &self.trailing_separator {
Ok(Some(separator)) => {
f.write_str(",\n")?;
Debug::fmt(&separator, f)
}
Err(_) => f.write_str(",\nmissing separator"),
Ok(None) => Ok(()),
}
}
}
/// List of nodes where every two nodes are separated by a token.
/// For example, the elements of an array where every two elements are separated by a comma token.
/// The list expects that the underlying syntax node has a slot for every node and separator
/// even if they are missing from the source code. For example, a list for `a b` where the `,` separator
/// is missing contains the slots `Node(a), Empty, Node(b)`. This also applies for missing nodes:
/// the list for `, b,` must have the slots `Empty, Token(,), Node(b), Token(,)`.
pub trait AstSeparatedList {
type Language: Language;
type Node: AstNode<Language = Self::Language>;
/// Returns the underlying syntax list
fn syntax_list(&self) -> &SyntaxList<Self::Language>;
/// Returns the underlying syntax list
fn into_syntax_list(self) -> SyntaxList<Self::Language>;
/// Returns an iterator over all nodes with their trailing separator
fn elements(&self) -> AstSeparatedListElementsIterator<Self::Language, Self::Node> {
AstSeparatedListElementsIterator::new(self.syntax_list())
}
/// Returns an iterator over all separator tokens
fn separators(&self) -> AstSeparatorIterator<Self::Language, Self::Node> {
AstSeparatorIterator {
inner: self.elements(),
}
}
/// Returns an iterator over all nodes
fn iter(&self) -> AstSeparatedListNodesIterator<Self::Language, Self::Node> {
AstSeparatedListNodesIterator {
inner: self.elements(),
}
}
/// Returns the first node
fn first(&self) -> Option<SyntaxResult<Self::Node>> {
self.iter().next()
}
/// Returns the last node
fn last(&self) -> Option<SyntaxResult<Self::Node>> {
self.iter().next_back()
}
#[inline]
fn is_empty(&self) -> bool {
self.len() == 0
}
fn len(&self) -> usize {
(self.syntax_list().len() + 1) / 2
}
fn trailing_separator(&self) -> Option<SyntaxToken<Self::Language>> {
match self.syntax_list().last()? {
SyntaxSlot::Token(token) => Some(token),
_ => None,
}
}
}
pub struct AstSeparatorIterator<L: Language, N> {
inner: AstSeparatedListElementsIterator<L, N>,
}
impl<L, N> Iterator for AstSeparatorIterator<L, N>
where
L: Language,
N: AstNode<Language = L>,
{
type Item = SyntaxResult<SyntaxToken<L>>;
fn next(&mut self) -> Option<Self::Item> {
loop {
let element = self.inner.next()?;
match element.trailing_separator {
Ok(Some(separator)) => return Some(Ok(separator)),
Err(missing) => return Some(Err(missing)),
_ => {}
}
}
}
}
impl<L, N> DoubleEndedIterator for AstSeparatorIterator<L, N>
where
L: Language,
N: AstNode<Language = L>,
{
fn next_back(&mut self) -> Option<Self::Item> {
loop {
let element = self.inner.next_back()?;
match element.trailing_separator {
Ok(Some(separator)) => return Some(Ok(separator)),
Err(missing) => return Some(Err(missing)),
_ => {}
}
}
}
}
#[derive(Debug, Clone)]
pub struct AstSeparatedListElementsIterator<L: Language, N> {
slots: SyntaxSlots<L>,
ph: PhantomData<N>,
}
impl<L: Language, N: AstNode<Language = L>> AstSeparatedListElementsIterator<L, N> {
fn new(list: &SyntaxList<L>) -> Self {
Self {
slots: list.iter(),
ph: PhantomData,
}
}
}
impl<L: Language, N: AstNode<Language = L>> Iterator for AstSeparatedListElementsIterator<L, N> {
type Item = AstSeparatedElement<L, N>;
fn next(&mut self) -> Option<Self::Item> {
let slot = self.slots.next()?;
let node = match slot {
// The node for this element is missing if the next child is a token instead of a node.
SyntaxSlot::Token(token) => panic!("Malformed list, node expected but found token {:?} instead. You must add missing markers for missing elements.", token),
// Missing element
SyntaxSlot::Empty => Err(SyntaxError::MissingRequiredChild),
SyntaxSlot::Node(node) => Ok(N::unwrap_cast(node))
};
let separator = match self.slots.next() {
Some(SyntaxSlot::Empty) => Err(
SyntaxError::MissingRequiredChild,
),
Some(SyntaxSlot::Token(token)) => Ok(Some(token)),
// End of list, no trailing separator
None => Ok(None),
Some(SyntaxSlot::Node(node)) => panic!("Malformed separated list, separator expected but found node {:?} instead. You must add missing markers for missing separators.", node),
};
Some(AstSeparatedElement {
node,
trailing_separator: separator,
})
}
}
impl<L: Language, N: AstNode<Language = L>> FusedIterator
for AstSeparatedListElementsIterator<L, N>
{
}
impl<L: Language, N: AstNode<Language = L>> DoubleEndedIterator
for AstSeparatedListElementsIterator<L, N>
{
fn next_back(&mut self) -> Option<Self::Item> {
let first_slot = self.slots.next_back()?;
let separator = match first_slot {
SyntaxSlot::Node(node) => {
// if we fallback here, it means that we are at the end of the iterator
// which means that we don't have the optional separator and
// we have only a node, we bail early.
return Some(AstSeparatedElement {
node: Ok(N::unwrap_cast(node)),
trailing_separator: Ok(None),
});
}
SyntaxSlot::Token(token) => Ok(Some(token)),
SyntaxSlot::Empty => Ok(None),
};
let node = match self.slots.next_back() {
None => panic!("Malformed separated list, expected a node but found none"),
Some(SyntaxSlot::Empty) => Err(SyntaxError::MissingRequiredChild),
Some(SyntaxSlot::Token(token)) => panic!("Malformed list, node expected but found token {:?} instead. You must add missing markers for missing elements.", token),
Some(SyntaxSlot::Node(node)) => {
Ok(N::unwrap_cast(node))
}
};
Some(AstSeparatedElement {
node,
trailing_separator: separator,
})
}
}
#[derive(Debug, Clone)]
pub struct AstSeparatedListNodesIterator<L: Language, N> {
inner: AstSeparatedListElementsIterator<L, N>,
}
impl<L: Language, N: AstNode<Language = L>> Iterator for AstSeparatedListNodesIterator<L, N> {
type Item = SyntaxResult<N>;
fn next(&mut self) -> Option<Self::Item> {
self.inner.next().map(|element| element.node)
}
}
impl<L: Language, N: AstNode<Language = L>> FusedIterator for AstSeparatedListNodesIterator<L, N> {}
impl<L: Language, N: AstNode<Language = L>> DoubleEndedIterator
for AstSeparatedListNodesIterator<L, N>
{
fn next_back(&mut self) -> Option<Self::Item> {
self.inner.next_back().map(|element| element.node)
}
}
/// Specific result used when navigating nodes using AST APIs
pub type SyntaxResult<ResultType> = Result<ResultType, SyntaxError>;
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(Serialize))]
pub enum SyntaxError {
/// Error thrown when a mandatory node is not found
MissingRequiredChild,
}
impl Display for SyntaxError {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
match self {
SyntaxError::MissingRequiredChild => fmt.write_str("missing required child"),
}
}
}
impl Error for SyntaxError {}
pub mod support {
use super::{AstNode, SyntaxNode, SyntaxToken};
use super::{Language, SyntaxError, SyntaxResult};
use crate::syntax::SyntaxSlot;
use crate::SyntaxElementChildren;
use std::fmt::{Debug, Formatter};
pub fn node<L: Language, N: AstNode<Language = L>>(
parent: &SyntaxNode<L>,
slot_index: usize,
) -> Option<N> {
match parent.slots().nth(slot_index)? {
SyntaxSlot::Empty => None,
SyntaxSlot::Node(node) => Some(N::unwrap_cast(node)),
SyntaxSlot::Token(token) => panic!(
"expected a node in the slot {} but found token {:?}",
slot_index, token
),
}
}
pub fn required_node<L: Language, N: AstNode<Language = L>>(
parent: &SyntaxNode<L>,
slot_index: usize,
) -> SyntaxResult<N> {
self::node(parent, slot_index).ok_or(SyntaxError::MissingRequiredChild)
}
pub fn elements<L: Language>(parent: &SyntaxNode<L>) -> SyntaxElementChildren<L> {
parent.children_with_tokens()
}
pub fn list<L: Language, N: AstNode<Language = L>>(
parent: &SyntaxNode<L>,
slot_index: usize,
) -> N {
required_node(parent, slot_index)
.unwrap_or_else(|_| panic!("expected a list in slot {} of {:?}", slot_index, parent))
}
pub fn token<L: Language>(parent: &SyntaxNode<L>, slot_index: usize) -> Option<SyntaxToken<L>> {
match parent.slots().nth(slot_index)? {
SyntaxSlot::Empty => None,
SyntaxSlot::Token(token) => Some(token),
SyntaxSlot::Node(node) => panic!(
"expected a token in the slot {} but found node {:?}",
slot_index, node
),
}
}
pub fn required_token<L: Language>(
parent: &SyntaxNode<L>,
slot_index: usize,
) -> SyntaxResult<SyntaxToken<L>> {
token(parent, slot_index).ok_or(SyntaxError::MissingRequiredChild)
}
/// New-type wrapper to flatten the debug output of syntax result fields when printing [AstNode]s.
/// Omits the [Ok] if the node is present and prints `missing (required)` if the child is missing
pub struct DebugSyntaxResult<N>(pub SyntaxResult<N>);
impl<N: Debug> Debug for DebugSyntaxResult<N> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match &self.0 {
Ok(node) => std::fmt::Debug::fmt(node, f),
Err(SyntaxError::MissingRequiredChild) => f.write_str("missing (required)"),
}
}
}
/// New-type wrapper to flatten the debug output of optional children when printing [AstNode]s.
/// Omits the [Some] if the node is present and prints `missing (optional)` if the child is missing
pub struct DebugOptionalElement<N>(pub Option<N>);
impl<N: Debug> Debug for DebugOptionalElement<N> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match &self.0 {
Some(node) => std::fmt::Debug::fmt(node, f),
None => f.write_str("missing (optional)"),
}
}
}
}
#[cfg(test)]
mod tests {
use crate::raw_language::{
LiteralExpression, RawLanguage, RawLanguageKind, RawSyntaxTreeBuilder,
SeparatedExpressionList,
};
use crate::{AstNode, AstSeparatedElement, AstSeparatedList, SyntaxResult};
/// Creates a ast separated list over a sequence of numbers separated by ",".
/// The elements are pairs of: (value, separator).
fn build_list<'a>(
elements: impl IntoIterator<Item = (Option<i32>, Option<&'a str>)>,
) -> SeparatedExpressionList {
let mut builder = RawSyntaxTreeBuilder::new();
builder.start_node(RawLanguageKind::SEPARATED_EXPRESSION_LIST);
for (node, separator) in elements {
if let Some(node) = node {
builder.start_node(RawLanguageKind::LITERAL_EXPRESSION);
builder.token(RawLanguageKind::NUMBER_TOKEN, node.to_string().as_str());
builder.finish_node();
}
if let Some(separator) = separator {
builder.token(RawLanguageKind::COMMA_TOKEN, separator);
}
}
builder.finish_node();
let node = builder.finish();
SeparatedExpressionList::new(node.into_list())
}
type MappedElement = Vec<(Option<f64>, Option<String>)>;
fn map_elements<'a>(
actual: impl Iterator<Item = AstSeparatedElement<RawLanguage, LiteralExpression>>
+ DoubleEndedIterator,
expected: impl IntoIterator<Item = (Option<f64>, Option<&'a str>)>,
revert: bool,
) -> (MappedElement, MappedElement) {
let actual: Vec<_> = if revert {
actual.rev().collect()
} else {
actual.collect()
};
let actual = actual
.into_iter()
.map(|element| {
(
element.node.ok().map(|n| n.text().parse::<f64>().unwrap()),
element
.trailing_separator
.ok()
.flatten()
.map(|separator| separator.text().to_string()),
)
})
.collect::<Vec<_>>();
let expected = expected
.into_iter()
.map(|(value, separator)| (value, separator.map(|sep| sep.to_string())))
.collect::<Vec<_>>();
(actual, expected)
}
fn assert_elements<'a>(
actual: impl Iterator<Item = AstSeparatedElement<RawLanguage, LiteralExpression>>
+ DoubleEndedIterator,
expected: impl IntoIterator<Item = (Option<f64>, Option<&'a str>)>,
) {
let (actual, expected) = map_elements(actual, expected, false);
assert_eq!(actual, expected);
}
fn assert_rev_elements<'a>(
actual: impl Iterator<Item = AstSeparatedElement<RawLanguage, LiteralExpression>>
+ DoubleEndedIterator,
expected: impl IntoIterator<Item = (Option<f64>, Option<&'a str>)>,
) {
let (actual, expected) = map_elements(actual, expected, true);
assert_eq!(actual, expected);
}
fn assert_nodes(
actual: impl Iterator<Item = SyntaxResult<LiteralExpression>>,
expected: impl IntoIterator<Item = f64>,
) {
assert_eq!(
actual
.map(|literal| literal.unwrap().text().parse::<f64>().unwrap())
.collect::<Vec<_>>(),
expected.into_iter().collect::<Vec<_>>()
);
}
#[test]
fn empty() {
let list = build_list(vec![]);
assert_eq!(list.len(), 0);
assert!(list.is_empty());
assert_eq!(list.separators().count(), 0);
assert_nodes(list.iter(), vec![]);
assert_elements(list.elements(), vec![]);
assert_rev_elements(list.elements(), vec![]);
assert_eq!(list.trailing_separator(), None);
}
#[test]
fn separated_list() {
let list = build_list(vec![
(Some(1), Some(",")),
(Some(2), Some(",")),
(Some(3), Some(",")),
(Some(4), None),
]);
assert_eq!(list.len(), 4);
assert!(!list.is_empty());
assert_eq!(list.separators().count(), 3);
assert_nodes(list.iter(), vec![1., 2., 3., 4.]);
assert_elements(
list.elements(),
vec![
(Some(1.), Some(",")),
(Some(2.), Some(",")),
(Some(3.), Some(",")),
(Some(4.), None),
],
);
assert_rev_elements(
list.elements(),
vec![
(Some(4.), None),
(Some(3.), Some(",")),
(Some(2.), Some(",")),
(Some(1.), Some(",")),
],
);
assert_eq!(list.trailing_separator(), None);
}
#[test]
fn double_iterator_meet_at_middle() {
let list = build_list(vec![
(Some(1), Some(",")),
(Some(2), Some(",")),
(Some(3), Some(",")),
(Some(4), None),
]);
let mut iter = list.elements();
let element = iter.next().unwrap();
assert_eq!(element.node().unwrap().text(), "1");
let element = iter.next_back().unwrap();
assert_eq!(element.node().unwrap().text(), "4");
let element = iter.next().unwrap();
assert_eq!(element.node().unwrap().text(), "2");
let element = iter.next_back().unwrap();
assert_eq!(element.node().unwrap().text(), "3");
assert!(iter.next().is_none());
assert!(iter.next_back().is_none());
}
#[test]
fn separated_with_trailing() {
// list(1, 2, 3, 4,)
let list = build_list(vec![
(Some(1), Some(",")),
(Some(2), Some(",")),
(Some(3), Some(",")),
(Some(4), Some(",")),
]);
assert_eq!(list.len(), 4);
assert!(!list.is_empty());
assert_nodes(list.iter(), vec![1., 2., 3., 4.]);
assert_eq!(list.separators().count(), 4);
assert_elements(
list.elements(),
vec![
(Some(1.), Some(",")),
(Some(2.), Some(",")),
(Some(3.), Some(",")),
(Some(4.), Some(",")),
],
);
assert_rev_elements(
list.elements(),
vec![
(Some(4.), Some(",")),
(Some(3.), Some(",")),
(Some(2.), Some(",")),
(Some(1.), Some(",")),
],
);
assert!(list.trailing_separator().is_some());
}
#[test]
fn separated_with_two_successive_separators() {
// list([1,,])
let list = build_list(vec![(Some(1), Some(",")), (None, Some(","))]);
assert_eq!(list.len(), 2);
assert!(!list.is_empty());
assert_eq!(list.separators().count(), 2);
assert_elements(
list.elements(),
vec![(Some(1.), Some(",")), (None, Some(","))],
);
assert_rev_elements(
list.elements(),
vec![(None, Some(",")), (Some(1.), Some(","))],
);
}
#[test]
fn separated_with_leading_separator() {
// list([,3])
let list = build_list(vec![(None, Some(",")), (Some(3), None)]);
assert_eq!(list.len(), 2);
assert!(!list.is_empty());
assert_eq!(list.separators().count(), 1);
assert_elements(
list.elements(),
vec![
// missing first element
(None, Some(",")),
(Some(3.), None),
],
);
assert_rev_elements(
list.elements(),
vec![
// missing first element
(Some(3.), None),
(None, Some(",")),
],
);
}
#[test]
fn separated_with_two_successive_nodes() {
// list([1 2,])
let list = build_list(vec![(Some(1), None), (Some(2), Some(","))]);
assert_eq!(list.len(), 2);
assert!(!list.is_empty());
assert_eq!(list.separators().count(), 2);
assert_elements(
list.elements(),
vec![(Some(1.), None), (Some(2.), Some(","))],
);
assert_rev_elements(
list.elements(),
vec![(Some(2.), Some(",")), (Some(1.), None)],
);
}
#[test]
fn ok_typed_parent_navigation() {
use crate::ast::SyntaxNodeCast;
use crate::raw_language::{RawLanguage, RawLanguageKind, RawSyntaxTreeBuilder};
use crate::*;
// This test creates the following tree
// Root
// Condition
// Let
// then selects the CONDITION node, cast it,
// then navigate upwards to its parent.
// All casts are fake and implemented below
let tree = RawSyntaxTreeBuilder::wrap_with_node(RawLanguageKind::ROOT, |builder| {
builder.start_node(RawLanguageKind::CONDITION);
builder.token(RawLanguageKind::LET_TOKEN, "let");
builder.finish_node();
});
let typed = tree.first_child().unwrap().cast::<RawRoot>().unwrap();
let _ = typed.parent::<RawRoot>().unwrap();
#[derive(Clone)]
struct RawRoot(SyntaxNode<RawLanguage>);
impl AstNode for RawRoot {
type Language = RawLanguage;
const KIND_SET: SyntaxKindSet<Self::Language> =
SyntaxKindSet::from_raw(RawSyntaxKind(RawLanguageKind::ROOT as u16));
fn can_cast(_: <Self::Language as Language>::Kind) -> bool {
todo!()
}
fn cast(syntax: SyntaxNode<Self::Language>) -> Option<Self>
where
Self: Sized,
{
Some(Self(syntax))
}
fn syntax(&self) -> &SyntaxNode<Self::Language> {
&self.0
}
fn into_syntax(self) -> SyntaxNode<Self::Language> {
todo!()
}
}
}
}