1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
//! An extremely fast, lookup table based, ECMAScript lexer which yields SyntaxKind tokens used by the rome-js parser.
//! For the purposes of error recovery, tokens may have an error attached to them, which is reflected in the Iterator Item.
//! The lexer will also yield `COMMENT` and `WHITESPACE` tokens.
//!
//! The lexer operates on raw bytes to take full advantage of lookup table optimizations, these bytes **must** be valid utf8,
//! therefore making a lexer from a `&[u8]` is unsafe since you must make sure the bytes are valid utf8.
//! Do not use this to learn how to lex JavaScript, this is just needlessly fast and demonic because i can't control myself :)
//!
//! basic ANSI syntax highlighting is also offered through the `highlight` feature.
//!
//! # Warning ⚠️
//!
//! `>>` and `>>>` are not emitted as single tokens, they are emitted as multiple `>` tokens. This is because of
//! TypeScript parsing and productions such as `T<U<N>>`

#![allow(clippy::or_fun_call)]

#[rustfmt::skip]
mod errors;
mod tests;

#[cfg(feature = "highlight")]
mod highlight;

use bitflags::bitflags;
#[cfg(feature = "highlight")]
pub use highlight::*;

use biome_js_syntax::JsSyntaxKind::*;
pub use biome_js_syntax::*;
use biome_parser::diagnostic::ParseDiagnostic;
use biome_parser::lexer::{LexContext, Lexer, LexerCheckpoint, TokenFlags};
use biome_unicode_table::{
    is_js_id_continue, is_js_id_start, lookup_byte,
    Dispatch::{self, *},
};
use unicode_bom::Bom;

use self::errors::invalid_digits_after_unicode_escape_sequence;

// The first utf8 byte of every valid unicode whitespace char, used for short circuiting whitespace checks
const UNICODE_WHITESPACE_STARTS: [u8; 5] = [
    // NBSP
    0xC2, // BOM
    0xEF, // Ogham space mark
    0xE1, // En quad .. Hair space, narrow no break space, mathematical space
    0xE2, // Ideographic space
    0xE3,
];

// Unicode spaces, designated by the `Zs` unicode property
const UNICODE_SPACES: [char; 19] = [
    '\u{0020}', '\u{00A0}', '\u{1680}', '\u{2000}', '\u{2001}', '\u{2002}', '\u{2003}', '\u{2004}',
    '\u{2005}', '\u{2006}', '\u{2007}', '\u{2008}', '\u{2009}', '\u{200A}', '\u{200B}', '\u{202F}',
    '\u{205F}', '\u{3000}', '\u{FEFF}',
];

/// Context in which the lexer should lex the next token
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default)]
pub enum JsLexContext {
    /// Default context for if the lexer isn't in any specific other context
    #[default]
    Regular,

    /// For lexing the elements of a JS template literal or TS template type.
    /// Doesn't skip whitespace trivia.
    TemplateElement { tagged: bool },

    /// Lexes a token in a JSX children context.
    /// Returns one of
    /// - Whitespace trivia
    /// - JsxText
    /// - `<` end of the current element, or start of a new element
    /// - expression start: `{`
    /// - EOF
    JsxChild,

    /// Lexes a JSX Attribute value. Calls into normal lex token if positioned at anything
    /// that isn't `'` or `"`.
    JsxAttributeValue,
}

impl LexContext for JsLexContext {
    /// Returns true if this is [JsLexContext::Regular]
    fn is_regular(&self) -> bool {
        matches!(self, JsLexContext::Regular)
    }
}

/// Context in which the [JsLexContext]'s current should be re-lexed.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum JsReLexContext {
    /// Re-lexes a `/` or `/=` token as a regular expression.
    Regex,
    /// Re-lexes
    /// * `> >` as `>>`
    /// * `> > >` as `>>>`,
    /// * `> =` as '>='
    /// * `> > =` as '>>='
    /// * `> > > =` as `>>>=`
    BinaryOperator,
    /// Re-lexes `'<', '<'` as `<<` in places where a type argument is expected to support
    /// `B<<A>()>`
    TypeArgumentLessThan,
    /// Re-lexes an identifier or keyword as a JSX identifier (that allows `-` tokens)
    JsxIdentifier,

    /// See [JsLexContext::JsxChild]
    JsxChild,
}

/// An extremely fast, lookup table based, lossless ECMAScript lexer
#[derive(Debug)]
pub(crate) struct JsLexer<'src> {
    /// Source text
    source: &'src str,

    /// The start byte position in the source text of the next token.
    position: usize,

    /// `true` if there has been a line break between the last non-trivia token and the next non-trivia token.
    after_newline: bool,

    /// If the source starts with a Unicode BOM, this is the number of bytes for that token.
    unicode_bom_length: usize,

    /// Byte offset of the current token from the start of the source
    /// The range of the current token can be computed by `self.position - self.current_start`
    current_start: TextSize,

    /// The kind of the current token
    current_kind: JsSyntaxKind,

    /// Flags for the current token
    current_flags: TokenFlags,

    diagnostics: Vec<ParseDiagnostic>,
}

impl<'src> Lexer<'src> for JsLexer<'src> {
    type Kind = JsSyntaxKind;
    type LexContext = JsLexContext;
    type ReLexContext = JsReLexContext;

    fn source(&self) -> &'src str {
        self.source
    }

    fn current(&self) -> Self::Kind {
        self.current_kind
    }

    fn current_range(&self) -> TextRange {
        TextRange::new(self.current_start, TextSize::from(self.position as u32))
    }

    fn checkpoint(&self) -> LexerCheckpoint<Self::Kind> {
        LexerCheckpoint {
            position: TextSize::from(self.position as u32),
            current_start: self.current_start,
            current_flags: self.current_flags,
            current_kind: self.current_kind,
            after_line_break: self.after_newline,
            unicode_bom_length: self.unicode_bom_length,
            diagnostics_pos: self.diagnostics.len() as u32,
        }
    }

    fn next_token(&mut self, context: Self::LexContext) -> Self::Kind {
        self.current_start = TextSize::from(self.position as u32);
        self.current_flags = TokenFlags::empty();

        let kind = if self.is_eof() {
            EOF
        } else {
            match context {
                JsLexContext::Regular => self.lex_token(),
                JsLexContext::TemplateElement { tagged } => self.lex_template(tagged),
                JsLexContext::JsxChild => self.lex_jsx_child_token(),
                JsLexContext::JsxAttributeValue => self.lex_jsx_attribute_value(),
            }
        };

        self.current_flags
            .set(TokenFlags::PRECEDING_LINE_BREAK, self.after_newline);
        self.current_kind = kind;

        if !kind.is_trivia() {
            self.after_newline = false;
        }

        kind
    }

    fn re_lex(&mut self, context: Self::ReLexContext) -> Self::Kind {
        let old_position = self.position;
        self.position = u32::from(self.current_start) as usize;

        let re_lexed_kind = match context {
            JsReLexContext::Regex if matches!(self.current(), T![/] | T![/=]) => self.read_regex(),
            JsReLexContext::BinaryOperator => self.re_lex_binary_operator(),
            JsReLexContext::TypeArgumentLessThan => self.re_lex_type_argument_less_than(),
            JsReLexContext::JsxIdentifier => self.re_lex_jsx_identifier(old_position),
            JsReLexContext::JsxChild if !self.is_eof() => self.lex_jsx_child_token(),
            _ => self.current(),
        };

        if self.current() == re_lexed_kind {
            // Didn't re-lex anything. Return existing token again
            self.position = old_position;
        } else {
            self.current_kind = re_lexed_kind;
        }

        re_lexed_kind
    }

    fn has_preceding_line_break(&self) -> bool {
        self.current_flags.has_preceding_line_break()
    }

    fn has_unicode_escape(&self) -> bool {
        self.current_flags.has_unicode_escape()
    }

    fn rewind(&mut self, checkpoint: LexerCheckpoint<Self::Kind>) {
        // test_err js js_rewind_at_eof_token
        // (([zAgRvz=[=(e{V{

        let LexerCheckpoint {
            position,
            current_start,
            current_flags,
            current_kind,
            after_line_break,
            unicode_bom_length,
            diagnostics_pos,
        } = checkpoint;

        let new_pos = u32::from(position) as usize;

        self.position = new_pos;
        self.current_kind = current_kind;
        self.current_start = current_start;
        self.current_flags = current_flags;
        self.after_newline = after_line_break;
        self.unicode_bom_length = unicode_bom_length;
        self.diagnostics.truncate(diagnostics_pos as usize);
    }

    fn finish(self) -> Vec<ParseDiagnostic> {
        self.diagnostics
    }

    fn current_flags(&self) -> TokenFlags {
        self.current_flags
    }
}

impl<'src> JsLexer<'src> {
    /// Make a new lexer from a str, this is safe because strs are valid utf8
    pub fn from_str(source: &'src str) -> Self {
        Self {
            source,
            after_newline: false,
            unicode_bom_length: 0,
            current_kind: TOMBSTONE,
            current_start: TextSize::from(0),
            current_flags: TokenFlags::empty(),
            position: 0,
            diagnostics: vec![],
        }
    }

    fn re_lex_binary_operator(&mut self) -> JsSyntaxKind {
        if self.current_byte() == Some(b'>') {
            match self.next_byte() {
                Some(b'>') => match self.next_byte() {
                    Some(b'>') => match self.next_byte() {
                        Some(b'=') => self.eat_byte(T![>>>=]),
                        _ => T![>>>],
                    },
                    Some(b'=') => self.eat_byte(T![>>=]),
                    _ => T![>>],
                },
                Some(b'=') => self.eat_byte(T![>=]),
                _ => T![>],
            }
        } else {
            self.current_kind
        }
    }

    fn re_lex_type_argument_less_than(&mut self) -> JsSyntaxKind {
        if self.current() == T![<<] {
            self.advance(1);
            T![<]
        } else {
            self.current()
        }
    }

    fn re_lex_jsx_identifier(&mut self, current_end: usize) -> JsSyntaxKind {
        if self.current_kind.is_keyword() || self.current_kind == T![ident] {
            self.position = current_end;

            while let Some(current_byte) = self.current_byte() {
                match current_byte {
                    b'-' => {
                        self.advance(1);
                    }
                    b':' => {
                        break;
                    }
                    _ => {
                        let start = self.position;

                        // consume ident advances by one position, so move back by one
                        self.position -= 1;
                        self.consume_ident();

                        // Didn't eat any identifier parts, break out
                        if start == self.position {
                            self.position = start;
                            break;
                        }
                    }
                }
            }

            JSX_IDENT
        } else {
            self.current_kind
        }
    }

    fn lex_jsx_child_token(&mut self) -> JsSyntaxKind {
        debug_assert!(!self.is_eof());

        // SAFETY: `lex_token` only calls this method if it isn't passed the EOF
        let chr = unsafe { self.current_unchecked() };

        match chr {
            // `<`: empty jsx text, directly followed by another element or closing element
            b'<' => self.eat_byte(T![<]),
            // `{`: empty jsx text, directly followed by an expression
            b'{' => self.eat_byte(T!['{']),
            _ => {
                while let Some(chr) = self.current_byte() {
                    // but not one of: { or < or > or }
                    match chr {
                        // Start of a new element, the closing tag, or an expression
                        b'<' | b'{' => break,
                        b'>' => {
                            self.diagnostics.push(ParseDiagnostic::new(
                                "Unexpected token. Did you mean `{'>'}` or `&gt;`?",
                                self.position..self.position + 1,
                            ));
                            self.advance(1);
                        }
                        b'}' => {
                            self.diagnostics.push(ParseDiagnostic::new(
                                "Unexpected token. Did you mean `{'}'}` or `&rbrace;`?",
                                self.position..self.position + 1,
                            ));
                            self.advance(1);
                        }
                        chr => {
                            if chr.is_ascii() {
                                self.advance(1);
                            } else {
                                self.advance_char_unchecked();
                            }
                        }
                    }
                }

                JSX_TEXT_LITERAL
            }
        }
    }

    fn lex_jsx_attribute_value(&mut self) -> JsSyntaxKind {
        debug_assert!(!self.is_eof());

        // Safety: Guaranteed because we aren't at the end of the file
        let chr = unsafe { self.current_unchecked() };

        match chr {
            b'\'' | b'"' => {
                self.consume_str_literal(true);
                JSX_STRING_LITERAL
            }
            _ => self.lex_token(),
        }
    }

    /// Bumps the current byte and creates a lexed token of the passed in kind
    fn eat_byte(&mut self, tok: JsSyntaxKind) -> JsSyntaxKind {
        self.next_byte();
        tok
    }

    /// Consume just one newline/line break.
    ///
    /// ## Safety
    /// Must be called at a valid UT8 char boundary
    fn consume_newline(&mut self) -> bool {
        self.assert_at_char_boundary();

        let start = self.position;

        match self.current_byte() {
            Some(b'\r') if self.peek_byte() == Some(b'\n') => self.advance(2),
            Some(b'\r' | b'\n') => self.advance(1),
            Some(chr) if !chr.is_ascii() => {
                let chr = self.current_char_unchecked();
                if is_linebreak(chr) {
                    self.advance(chr.len_utf8());
                }
            }
            _ => {}
        }

        self.position != start
    }

    /// Consumes all whitespace until a non-whitespace or a newline is found.
    ///
    /// ## Safety
    /// Must be called at a valid UT8 char boundary
    fn consume_whitespaces(&mut self) {
        self.assert_at_char_boundary();

        while let Some(chr) = self.current_byte() {
            match lookup_byte(chr) {
                Dispatch::WHS => {
                    if let b'\r' | b'\n' = chr {
                        break;
                    } else {
                        self.next_byte();
                    }
                }
                Dispatch::UNI => {
                    let chr = self.current_char_unchecked();

                    if UNICODE_SPACES.contains(&chr) {
                        self.advance(chr.len_utf8());
                    } else {
                        break;
                    }
                }
                _ => break,
            }
        }
    }

    /// Consume one newline or all whitespace until a non-whitespace or a newline is found.
    ///
    /// ## Safety
    /// Must be called at a valid UT8 char boundary
    fn consume_newline_or_whitespaces(&mut self) -> JsSyntaxKind {
        if self.consume_newline() {
            self.after_newline = true;
            NEWLINE
        } else {
            self.consume_whitespaces();
            WHITESPACE
        }
    }

    /// Check if the source starts with a Unicode BOM character. If it does,
    /// consume it and return the UNICODE_BOM token kind.
    ///
    /// ## Safety
    /// Must be called at a valid UT8 char boundary (and realistically only at
    /// the start position of the source).
    fn consume_potential_bom(&mut self) -> Option<JsSyntaxKind> {
        // Bom needs at least the first three bytes of the source to know if it
        // matches the UTF-8 BOM and not an alternative. This can be expanded
        // to more bytes to support other BOM characters if Biome decides to
        // support other encodings like UTF-16.
        if let Some(first) = self.source().get(0..3) {
            let bom = Bom::from(first.as_bytes());
            self.unicode_bom_length = bom.len();
            self.advance(self.unicode_bom_length);

            match bom {
                Bom::Null => None,
                _ => Some(UNICODE_BOM),
            }
        } else {
            None
        }
    }

    /// Get the UTF8 char which starts at the current byte
    ///
    /// ## Safety
    /// Must be called at a valid UT8 char boundary
    fn current_char_unchecked(&self) -> char {
        // Precautionary measure for making sure the unsafe code below does not read over memory boundary
        debug_assert!(!self.is_eof());
        self.assert_at_char_boundary();

        // Safety: We know this is safe because we require the input to the lexer to be valid utf8 and we always call this when we are at a char
        let string = unsafe {
            std::str::from_utf8_unchecked(self.source.as_bytes().get_unchecked(self.position..))
        };
        let chr = if let Some(chr) = string.chars().next() {
            chr
        } else {
            // Safety: we always call this when we are at a valid char, so this branch is completely unreachable
            unsafe {
                core::hint::unreachable_unchecked();
            }
        };

        chr
    }

    /// Gets the current byte.
    ///
    /// ## Returns
    /// The current byte if the lexer isn't at the end of the file.
    #[inline]
    fn current_byte(&self) -> Option<u8> {
        if self.is_eof() {
            None
        } else {
            Some(self.source.as_bytes()[self.position])
        }
    }

    /// Asserts that the lexer is at a UTF8 char boundary
    #[inline]
    fn assert_at_char_boundary(&self) {
        debug_assert!(self.source.is_char_boundary(self.position));
    }

    /// Asserts that the lexer is currently positioned at `byte`
    #[inline]
    fn assert_byte(&self, byte: u8) {
        debug_assert_eq!(self.source.as_bytes()[self.position], byte);
    }

    /// Returns the current byte without checking if the lexer is at the end of the file.
    ///
    /// ## Safety
    /// Calling this function if the lexer is at or passed the end of file is undefined behaviour.
    #[inline]
    unsafe fn current_unchecked(&self) -> u8 {
        self.assert_at_char_boundary();
        *self.source.as_bytes().get_unchecked(self.position)
    }

    /// Advances the position by one and returns the next byte value
    #[inline]
    fn next_byte(&mut self) -> Option<u8> {
        self.advance(1);
        self.current_byte()
    }

    /// Get the next byte but only advance the index if there is a next byte.
    /// This is really just a hack for certain methods like escapes
    #[inline]
    fn next_byte_bounded(&mut self) -> Option<u8> {
        if let Some(b) = self.source.as_bytes().get(self.position + 1) {
            self.advance(1);
            Some(*b)
        } else {
            if !self.is_eof() {
                // Move the cursor by one to position the Lexer at the EOF token
                self.advance(1);
            }
            None
        }
    }

    /// Peeks at the next byte
    #[inline]
    fn peek_byte(&self) -> Option<u8> {
        self.byte_at(1)
    }

    /// Returns the byte at position `self.position + offset` or `None` if it is out of bounds.
    #[inline]
    fn byte_at(&self, offset: usize) -> Option<u8> {
        self.source.as_bytes().get(self.position + offset).copied()
    }

    /// Advances the current position by `n` bytes.
    #[inline]
    fn advance(&mut self, n: usize) {
        self.position += n;
    }

    #[inline]
    fn advance_byte_or_char(&mut self, chr: u8) {
        if chr.is_ascii() {
            self.advance(1);
        } else {
            self.advance_char_unchecked();
        }
    }

    /// Advances the current position by the current char UTF8 length
    ///
    /// ## Safety
    /// Must be called at a valid UT8 char boundary
    #[inline]
    fn advance_char_unchecked(&mut self) {
        let c = self.current_char_unchecked();
        self.position += c.len_utf8();
    }

    /// Returns `true` if the parser is at or passed the end of the file.
    #[inline]
    fn is_eof(&self) -> bool {
        self.position >= self.source.len()
    }

    // Read a `\u{000...}` escape sequence, this expects the cur char to be the `{`
    fn read_codepoint_escape(&mut self) -> Result<char, ()> {
        let start = self.position + 1;
        self.read_hexnumber();

        let current_byte = self.current_byte();

        // Abort on EOF
        if current_byte.is_none() {
            return Err(());
        }

        if current_byte != Some(b'}') {
            // We should not yield diagnostics on a unicode char boundary. That wont make codespan panic
            // but it may cause a panic for other crates which just consume the diagnostics
            let invalid = self.current_char_unchecked();
            let err = ParseDiagnostic::new(  "expected hex digits for a unicode code point escape, but encountered an invalid character",
                self.position..self.position + invalid.len_utf8() );
            self.diagnostics.push(err);
            self.position -= 1;
            return Err(());
        }

        // Safety: We know for a fact this is in bounds because we must be on the possible char after the } at this point
        // which means its impossible for the range of the digits to be out of bounds.
        // We also know we cant possibly be indexing a unicode char boundary because a unicode char (which cant be a hexdigit)
        // would have triggered the if statement above. We also know this must be valid utf8, both because of read_hexnumber's behavior
        // and because input to the lexer must be valid utf8
        let digits_str = unsafe {
            debug_assert!(self.source.as_bytes().get(start..self.position).is_some());
            debug_assert!(std::str::from_utf8(
                self.source.as_bytes().get_unchecked(start..self.position)
            )
            .is_ok());

            std::str::from_utf8_unchecked(
                self.source.as_bytes().get_unchecked(start..self.position),
            )
        };

        match u32::from_str_radix(digits_str, 16) {
            Ok(digits) if digits <= 0x10_FFFF => {
                let res = std::char::from_u32(digits);
                if let Some(chr) = res {
                    Ok(chr)
                } else {
                    let err = ParseDiagnostic::new(
                        "invalid codepoint for unicode escape",
                        start..self.position,
                    );
                    self.diagnostics.push(err);
                    Err(())
                }
            }

            _ => {
                let err = ParseDiagnostic::new(
                    "out of bounds codepoint for unicode codepoint escape sequence",
                    start..self.position,
                )
                .with_hint("Codepoints range from 0 to 0x10FFFF (1114111)");
                self.diagnostics.push(err);
                Err(())
            }
        }
    }

    // Read a `\u0000` escape sequence, this expects the current char to be the `u`, it also does not skip over the escape sequence
    // The pos after this method is the last hex digit
    fn read_unicode_escape(&mut self, advance: bool) -> Result<char, ()> {
        self.assert_byte(b'u');

        for idx in 0..4 {
            match self.next_byte_bounded() {
                None => {
                    if !advance {
                        self.position -= idx + 1;
                    }
                    let err = invalid_digits_after_unicode_escape_sequence(
                        self.position - 1,
                        self.position + 1,
                    );
                    self.diagnostics.push(err);
                    return Err(());
                }
                Some(b) if !b.is_ascii_hexdigit() => {
                    let err = invalid_digits_after_unicode_escape_sequence(
                        self.position - 1,
                        self.position + 1,
                    );
                    if !advance {
                        self.position -= idx + 1;
                    }
                    self.diagnostics.push(err);
                    return Err(());
                }
                _ => {}
            }
        }

        unsafe {
            // Safety: input to the lexer is guaranteed to be valid utf8 and so is the range since we return if there is a wrong amount of digits beforehand
            let digits_str = std::str::from_utf8_unchecked(
                self.source
                    .as_bytes()
                    .get_unchecked((self.position - 3)..(self.position + 1)),
            );
            if let Ok(digits) = u32::from_str_radix(digits_str, 16) {
                if !advance {
                    self.position -= 4;
                }
                Ok(std::char::from_u32_unchecked(digits))
            } else {
                // Safety: we know this is unreachable because 4 hexdigits cannot make an out of bounds char,
                // and we make sure that the chars are actually hex digits
                core::hint::unreachable_unchecked();
            }
        }
    }

    // Validate a `\x00 escape sequence, this expects the current char to be the `x`, it also does not skip over the escape sequence
    // The pos after this method is the last hex digit
    fn validate_hex_escape(&mut self) -> bool {
        self.assert_byte(b'x');

        let diagnostic = ParseDiagnostic::new(
            "invalid digits after hex escape sequence",
            (self.position - 1)..(self.position + 1),
        )
        .with_hint("Expected 2 hex digits following this");

        for _ in 0..2 {
            match self.next_byte_bounded() {
                None => {
                    self.diagnostics.push(diagnostic);
                    return false;
                }
                Some(b) if !b.is_ascii_hexdigit() => {
                    self.diagnostics.push(diagnostic);
                    return false;
                }
                _ => {}
            }
        }

        true
    }

    /// Consume a `\..` escape sequence.
    ///
    /// ## Safety
    /// Must be called at a valid UT8 char boundary
    fn consume_escape_sequence(&mut self) -> bool {
        self.assert_at_char_boundary();
        self.assert_byte(b'\\');
        let cur = self.position;
        self.advance(1); // eats '\'

        if let Some(chr) = self.current_byte() {
            match chr {
                b'\\' | b'n' | b'r' | b't' | b'b' | b'v' | b'f' | b'\'' | b'"' => {
                    self.advance(1);
                    true
                }
                b'u' if self.peek_byte() == Some(b'{') => {
                    self.advance(1); // eats '{'
                    self.read_codepoint_escape().is_ok()
                }
                b'u' => self.read_unicode_escape(true).is_ok(),
                b'x' => self.validate_hex_escape(),
                b'\r' => {
                    if let Some(b'\n') = self.next_byte() {
                        self.advance(1);
                    }
                    true
                }
                chr => {
                    self.advance_byte_or_char(chr);
                    true
                }
            }
        } else {
            self.diagnostics
                .push(ParseDiagnostic::new("", cur..cur + 1).with_hint(
                    "expected an escape sequence following a backslash, but found none",
                ));
            false
        }
    }

    // Consume an identifier by recursively consuming IDENTIFIER_PART kind chars
    #[inline]
    fn consume_ident(&mut self) {
        loop {
            if self.next_byte_bounded().is_none() || self.cur_ident_part().is_none() {
                break;
            }
        }
    }

    /// Consumes the identifier at the current position, and fills the given buf with the UTF-8
    /// encoded identifier that got consumed.
    ///
    /// Returns the number of bytes written into the buffer, and if any char was escaped.
    /// This method will stop writing into the buffer if the buffer is too small to
    /// fit the whole identifier.
    #[inline]
    fn consume_and_get_ident(&mut self, buf: &mut [u8]) -> (usize, bool) {
        let mut idx = 0;
        let mut any_escaped = false;
        while self.next_byte_bounded().is_some() {
            if let Some((c, escaped)) = self.cur_ident_part() {
                if let Some(buf) = buf.get_mut(idx..idx + 4) {
                    let res = c.encode_utf8(buf);
                    idx += res.len();
                    any_escaped |= escaped;
                }
            } else {
                return (idx, any_escaped);
            }
        }

        (idx, any_escaped)
    }

    /// Consume a string literal and advance the lexer, and returning a list of errors that occurred when reading the string
    /// This could include unterminated string and invalid escape sequences
    ///
    /// ## Safety
    /// Must be called at a valid UT8 char boundary
    fn consume_str_literal(&mut self, jsx_attribute: bool) -> bool {
        self.assert_at_char_boundary();
        let quote = unsafe { self.current_unchecked() };
        let start = self.position;
        let mut valid = true;

        self.advance(1); // eats the start quote
        while let Some(chr) = self.current_byte() {
            match chr {
                b'\\' if !jsx_attribute => {
                    valid &= self.consume_escape_sequence();
                }
                b'\r' | b'\n' if !jsx_attribute => {
                    let unterminated =
                        ParseDiagnostic::new("unterminated string literal", start..self.position)
                            .with_detail(start..self.position, "")
                            .with_detail(self.position..self.position + 2, "line breaks here");
                    self.diagnostics.push(unterminated);
                    return false;
                }
                chr if chr == quote => {
                    self.advance(1);
                    return valid;
                }
                chr => {
                    if chr.is_ascii() {
                        self.advance(1);
                    } else {
                        self.advance_char_unchecked();
                    }
                }
            }
        }

        let unterminated =
            ParseDiagnostic::new("unterminated string literal", self.position..self.position)
                .with_detail(self.position..self.position, "input ends here")
                .with_detail(start..start + 1, "string literal starts here");
        self.diagnostics.push(unterminated);

        false
    }

    /// Returns `Some(x)` if the current position is an identifier, with the character at
    /// the position.
    ///
    /// Boolean states if there are escaped characters.
    ///
    /// The character may be a char that was generated from a unicode escape sequence,
    /// e.g. `t` is returned, the actual source code is `\u{74}`
    #[inline]
    fn cur_ident_part(&mut self) -> Option<(char, bool)> {
        debug_assert!(!self.is_eof());

        // Safety: we always call this method on a char
        let b = unsafe { self.current_unchecked() };

        match lookup_byte(b) {
            IDT | DIG | ZER => Some((b as char, false)),
            // FIXME: This should use ID_Continue, not XID_Continue
            UNI => {
                let chr = self.current_char_unchecked();
                let res = is_js_id_continue(chr);
                if res {
                    self.advance(chr.len_utf8() - 1);
                    Some((chr, false))
                } else {
                    None
                }
            }
            BSL if self.peek_byte() == Some(b'u') => {
                let start = self.position;
                self.next_byte();
                let res = if self.peek_byte() == Some(b'{') {
                    self.next_byte();
                    self.read_codepoint_escape()
                } else {
                    self.read_unicode_escape(true)
                };

                if let Ok(c) = res {
                    if is_js_id_continue(c) {
                        Some((c, true))
                    } else {
                        self.position = start;
                        None
                    }
                } else {
                    self.position = start;
                    None
                }
            }
            _ => None,
        }
    }

    // check if the current char is an identifier start, this implicitly advances if the char being matched
    // is a `\uxxxx` sequence which is an identifier start, or if the char is a unicode char which is an identifier start
    #[inline]
    fn cur_is_ident_start(&mut self) -> bool {
        debug_assert!(!self.is_eof());

        // Safety: we always call this method on a char
        let b = unsafe { self.current_unchecked() };

        match lookup_byte(b) {
            BSL if self.peek_byte() == Some(b'u') => {
                self.next_byte();
                if let Ok(chr) = self.read_unicode_escape(false) {
                    if is_js_id_start(chr) {
                        self.advance(5);
                        return true;
                    }
                }
                self.position -= 1;
                false
            }
            UNI => {
                let chr = self.current_char_unchecked();
                if is_js_id_start(chr) {
                    self.advance(chr.len_utf8() - 1);
                    true
                } else {
                    false
                }
            }
            IDT => true,
            _ => false,
        }
    }

    /// Returns the identifier token at the current position, or the keyword token if
    /// the identifier is a keyword.
    ///
    /// `first` is a pair of a character that was already consumed,
    /// but is still part of the identifier, and the characters position.
    #[inline]
    fn resolve_identifier(&mut self, first: char) -> JsSyntaxKind {
        use JsSyntaxKind::*;

        // Note to keep the buffer large enough to fit every possible keyword that
        // the lexer can return
        let mut buf = [0u8; 16];
        let len = first.encode_utf8(&mut buf).len();

        let (count, escaped) = self.consume_and_get_ident(&mut buf[len..]);

        if escaped {
            self.current_flags |= TokenFlags::UNICODE_ESCAPE;
        }

        match &buf[..count + len] {
            // Keywords
            b"break" => BREAK_KW,
            b"case" => CASE_KW,
            b"catch" => CATCH_KW,
            b"class" => CLASS_KW,
            b"const" => CONST_KW,
            b"continue" => CONTINUE_KW,
            b"debugger" => DEBUGGER_KW,
            b"default" => DEFAULT_KW,
            b"delete" => DELETE_KW,
            b"do" => DO_KW,
            b"else" => ELSE_KW,
            b"enum" => ENUM_KW,
            b"export" => EXPORT_KW,
            b"extends" => EXTENDS_KW,
            b"false" => FALSE_KW,
            b"finally" => FINALLY_KW,
            b"for" => FOR_KW,
            b"function" => FUNCTION_KW,
            b"if" => IF_KW,
            b"in" => IN_KW,
            b"import" => IMPORT_KW,
            b"instanceof" => INSTANCEOF_KW,
            b"new" => NEW_KW,
            b"null" => NULL_KW,
            b"return" => RETURN_KW,
            b"super" => SUPER_KW,
            b"switch" => SWITCH_KW,
            b"this" => THIS_KW,
            b"throw" => THROW_KW,
            b"try" => TRY_KW,
            b"true" => TRUE_KW,
            b"typeof" => TYPEOF_KW,
            b"var" => VAR_KW,
            b"void" => VOID_KW,
            b"while" => WHILE_KW,
            b"with" => WITH_KW,
            // Strict mode contextual Keywords
            b"implements" => IMPLEMENTS_KW,
            b"interface" => INTERFACE_KW,
            b"let" => LET_KW,
            b"package" => PACKAGE_KW,
            b"private" => PRIVATE_KW,
            b"protected" => PROTECTED_KW,
            b"public" => PUBLIC_KW,
            b"static" => STATIC_KW,
            b"yield" => YIELD_KW,
            // contextual keywords
            b"abstract" => ABSTRACT_KW,
            b"accessor" => ACCESSOR_KW,
            b"as" => AS_KW,
            b"asserts" => ASSERTS_KW,
            b"assert" => ASSERT_KW,
            b"any" => ANY_KW,
            b"async" => ASYNC_KW,
            b"await" => AWAIT_KW,
            b"boolean" => BOOLEAN_KW,
            b"constructor" => CONSTRUCTOR_KW,
            b"declare" => DECLARE_KW,
            b"get" => GET_KW,
            b"infer" => INFER_KW,
            b"is" => IS_KW,
            b"keyof" => KEYOF_KW,
            b"module" => MODULE_KW,
            b"namespace" => NAMESPACE_KW,
            b"never" => NEVER_KW,
            b"readonly" => READONLY_KW,
            b"require" => REQUIRE_KW,
            b"number" => NUMBER_KW,
            b"object" => OBJECT_KW,
            b"satisfies" => SATISFIES_KW,
            b"set" => SET_KW,
            b"string" => STRING_KW,
            b"symbol" => SYMBOL_KW,
            b"type" => TYPE_KW,
            b"undefined" => UNDEFINED_KW,
            b"unique" => UNIQUE_KW,
            b"unknown" => UNKNOWN_KW,
            b"from" => FROM_KW,
            b"global" => GLOBAL_KW,
            b"bigint" => BIGINT_KW,
            b"override" => OVERRIDE_KW,
            b"of" => OF_KW,
            b"out" => OUT_KW,
            b"using" => USING_KW,
            _ => T![ident],
        }
    }

    #[inline]
    fn special_number_start<F: Fn(char) -> bool>(&mut self, func: F) -> bool {
        if self.byte_at(2).map(|b| func(b as char)).unwrap_or(false) {
            self.advance(1);
            true
        } else {
            false
        }
    }

    #[inline]
    fn maybe_bigint(&mut self) {
        if let Some(b'n') = self.current_byte() {
            self.next_byte();
        }
    }

    #[inline]
    fn read_zero(&mut self) {
        match self.peek_byte() {
            Some(b'x' | b'X') => {
                if self.special_number_start(|c| c.is_ascii_hexdigit()) {
                    self.read_hexnumber();
                    self.maybe_bigint();
                } else {
                    self.next_byte();
                }
            }
            Some(b'b' | b'B') => {
                if self.special_number_start(|c| c == '0' || c == '1') {
                    self.read_bindigits();
                    self.maybe_bigint();
                } else {
                    self.next_byte();
                }
            }
            Some(b'o' | b'O') => {
                if self.special_number_start(|c| ('0'..='7').contains(&c)) {
                    self.read_octaldigits();
                    self.maybe_bigint();
                } else {
                    self.next_byte();
                }
            }
            Some(b'n') => {
                self.advance(2);
            }
            Some(b'.') => {
                self.advance(1);
                self.read_float()
            }
            Some(b'e' | b'E') => {
                // At least one digit is required
                match self.byte_at(2) {
                    Some(b'-' | b'+') => {
                        if let Some(b'0'..=b'9') = self.byte_at(3) {
                            self.next_byte();
                            self.read_exponent();
                        } else {
                            self.next_byte();
                        }
                    }
                    Some(b'0'..=b'9') => {
                        self.next_byte();
                        self.read_exponent();
                    }
                    _ => {
                        self.next_byte();
                    }
                }
            }
            _ => self.read_number(true),
        }
    }

    #[inline]
    fn read_hexnumber(&mut self) {
        while let Some(byte) = self.next_byte() {
            match byte {
                b'_' => self.handle_numeric_separator(16),
                b if char::from(b).is_ascii_hexdigit() => {}
                _ => break,
            }
        }
    }

    #[inline]
    fn handle_numeric_separator(&mut self, radix: u8) {
        self.assert_byte(b'_');

        let err_diag = ParseDiagnostic::new(
            "numeric separators are only allowed between two digits",
            self.position..self.position + 1,
        );

        let peeked = self.peek_byte();

        if peeked.is_none() || !char::from(peeked.unwrap()).is_digit(u32::from(radix)) {
            self.diagnostics.push(err_diag);
            return;
        }

        let forbidden = |c: Option<u8>| {
            if c.is_none() {
                return true;
            }
            let c = c.unwrap();

            if radix == 16 {
                matches!(c, b'.' | b'X' | b'_' | b'x')
            } else {
                matches!(c, b'.' | b'B' | b'E' | b'O' | b'_' | b'b' | b'e' | b'o')
            }
        };

        let prev = self.source.as_bytes().get(self.position - 1).copied();

        if forbidden(prev) || forbidden(peeked) {
            self.diagnostics.push(err_diag);
            return;
        }

        self.next_byte_bounded();
    }

    #[inline]
    fn read_number(&mut self, leading_zero: bool) {
        let start = self.position;
        loop {
            match self.next_byte_bounded() {
                Some(b'_') => {
                    if leading_zero {
                        self.diagnostics.push(ParseDiagnostic::new(
                            "numeric separator can not be used after leading 0",
                            self.position..self.position,
                        ));
                    }
                    self.handle_numeric_separator(10);
                }
                Some(b'0'..=b'9') => {}
                Some(b'.') => {
                    if leading_zero {
                        self.diagnostics.push(ParseDiagnostic::new(
                            "unexpected number",
                            start..self.position + 1,
                        ));
                    }
                    return self.read_float();
                }
                // TODO: merge this, and read_float's implementation into one so we dont duplicate exponent code
                Some(b'e' | b'E') => {
                    // At least one digit is required
                    match self.peek_byte() {
                        Some(b'-' | b'+') => {
                            if let Some(b'0'..=b'9') = self.byte_at(2) {
                                self.next_byte();
                                self.read_exponent();
                                return;
                            } else {
                                return;
                            }
                        }
                        Some(b'0'..=b'9') => {
                            self.read_exponent();
                            return;
                        }
                        _ => {
                            return;
                        }
                    }
                }
                Some(b'n') => {
                    if leading_zero {
                        self.diagnostics.push(ParseDiagnostic::new(
                            "Octal literals are not allowed for BigInts.",
                            start..self.position + 1,
                        ));
                    }
                    self.next_byte();
                    return;
                }
                _ => {
                    return;
                }
            }
        }
    }

    #[inline]
    fn read_float(&mut self) {
        loop {
            match self.next_byte_bounded() {
                Some(b'_') => self.handle_numeric_separator(10),
                // LLVM has a hard time optimizing inclusive patterns, perhaps we should check if it makes llvm sad,
                // and optimize this into a lookup table
                Some(b'0'..=b'9') => {}
                Some(b'e' | b'E') => {
                    // At least one digit is required
                    match self.peek_byte() {
                        Some(b'-' | b'+') => {
                            if let Some(b'0'..=b'9') = self.byte_at(2) {
                                self.next_byte();
                                self.read_exponent();
                                return;
                            } else {
                                return;
                            }
                        }
                        Some(b'0'..=b'9') => {
                            self.read_exponent();
                            return;
                        }
                        _ => {
                            return;
                        }
                    }
                }
                _ => {
                    return;
                }
            }
        }
    }

    #[inline]
    fn read_exponent(&mut self) {
        if let Some(b'-' | b'+') = self.peek_byte() {
            self.next_byte();
        }

        loop {
            match self.next_byte() {
                Some(b'_') => self.handle_numeric_separator(10),
                Some(b'0'..=b'9') => {}
                _ => {
                    return;
                }
            }
        }
    }

    #[inline]
    fn read_bindigits(&mut self) {
        loop {
            match self.next_byte() {
                Some(b'_') => self.handle_numeric_separator(2),
                Some(b'0' | b'1') => {}
                _ => {
                    return;
                }
            }
        }
    }

    #[inline]
    fn read_octaldigits(&mut self) {
        loop {
            match self.next_byte() {
                Some(b'_') => self.handle_numeric_separator(8),
                Some(b'0'..=b'7') => {}
                _ => {
                    return;
                }
            }
        }
    }

    #[inline]
    fn verify_number_end(&mut self) -> JsSyntaxKind {
        let err_start = self.position;
        if !self.is_eof() && self.cur_is_ident_start() {
            self.consume_ident();
            let err = ParseDiagnostic::new(
                "numbers cannot be followed by identifiers directly after",
                err_start..self.position,
            )
            .with_hint("an identifier cannot appear here");

            self.diagnostics.push(err);
            JsSyntaxKind::ERROR_TOKEN
        } else {
            JS_NUMBER_LITERAL
        }
    }

    #[inline]
    fn read_shebang(&mut self) -> JsSyntaxKind {
        let start = self.position;
        self.next_byte();
        // Shebangs must be the first text in the file, but if there was a BOM
        // then that may be at a slightly further position than 0.
        if start != 0 && start != self.unicode_bom_length {
            return T![#];
        }

        if let Some(b'!') = self.current_byte() {
            while self.next_byte().is_some() {
                let chr = self.current_char_unchecked();

                if is_linebreak(chr) {
                    return JS_SHEBANG;
                }
                self.advance(chr.len_utf8() - 1);
            }
            JS_SHEBANG
        } else {
            let err = ParseDiagnostic::new(
                "expected `!` following a `#`, but found none",
                0usize..1usize,
            );
            self.diagnostics.push(err);

            JsSyntaxKind::ERROR_TOKEN
        }
    }

    #[inline]
    fn read_slash(&mut self) -> JsSyntaxKind {
        let start = self.position;
        match self.peek_byte() {
            Some(b'*') => {
                self.advance(2); // eats /*
                let mut has_newline = false;
                while let Some(chr) = self.current_byte() {
                    match chr {
                        b'*' if self.peek_byte() == Some(b'/') => {
                            self.advance(2); // eats */
                            if has_newline {
                                self.after_newline = true;
                                return MULTILINE_COMMENT;
                            } else {
                                return COMMENT;
                            }
                        }
                        chr => {
                            let n = if chr.is_ascii() {
                                has_newline |= matches!(chr, b'\r' | b'\n');
                                1
                            } else {
                                let chr = self.current_char_unchecked();
                                has_newline |= is_linebreak(chr);
                                chr.len_utf8()
                            };
                            self.advance(n);
                        }
                    }
                }

                let err = ParseDiagnostic::new(
                    "unterminated block comment",
                    self.position..self.position + 1,
                )
                .with_detail(
                    self.position..self.position + 1,
                    "... but the file ends here",
                )
                .with_detail(start..start + 2, "A block comment starts here");
                self.diagnostics.push(err);

                JsSyntaxKind::COMMENT
            }
            Some(b'/') => {
                self.advance(2); // eats //
                while let Some(chr) = self.current_byte() {
                    if let b'\r' | b'\n' = chr {
                        return COMMENT;
                    } else if chr.is_ascii() {
                        self.advance(1);
                    } else {
                        let chr = self.current_char_unchecked();
                        if is_linebreak(chr) {
                            return COMMENT;
                        } else {
                            self.advance(chr.len_utf8());
                        }
                    }
                }
                COMMENT
            }
            Some(b'=') => {
                self.advance(2); // eats /=
                SLASHEQ
            }
            _ => self.eat_byte(T![/]),
        }
    }

    #[inline]
    fn flag_err(&self, flag: char) -> ParseDiagnostic {
        ParseDiagnostic::new(
            format!("Duplicate flag `{}`.", flag),
            self.position..self.position + 1,
        )
        .with_hint("This flag was already used.")
    }
    #[inline]
    fn flag_uv_err(&self) -> ParseDiagnostic {
        ParseDiagnostic::new("Invalid regex flag.", self.position..self.position + 1).with_hint(
            "The 'u' and 'v' regular expression flags cannot be enabled at the same time.",
        )
    }
    #[inline]
    #[allow(clippy::many_single_char_names)]
    fn read_regex(&mut self) -> JsSyntaxKind {
        bitflags! {
            struct RegexFlag: u8 {
                const G = 1 << 0;
                const I = 1 << 1;
                const M = 1 << 2;
                const S = 1 << 3;
                const U = 1 << 4;
                const Y = 1 << 5;
                const D = 1 << 6;
                const V = 1 << 7;
            }
        }
        let current = unsafe { self.current_unchecked() };
        if current != b'/' {
            return self.lex_token();
        }

        let start = self.position;
        let mut in_class = false;

        self.advance(1); // eats /
        while let Some(chr) = self.current_byte() {
            match chr {
                b'[' => {
                    in_class = true;
                    self.next_byte();
                }
                b']' => {
                    in_class = false;
                    self.next_byte();
                }
                b'/' => {
                    if !in_class {
                        let mut flag = RegexFlag::empty();

                        while let Some(next) = self.next_byte_bounded() {
                            let chr_start = self.position;
                            match next {
                                b'g' => {
                                    if flag.contains(RegexFlag::G) {
                                        self.diagnostics.push(self.flag_err('g'));
                                    }
                                    flag |= RegexFlag::G;
                                }
                                b'i' => {
                                    if flag.contains(RegexFlag::I) {
                                        self.diagnostics.push(self.flag_err('i'));
                                    }
                                    flag |= RegexFlag::I;
                                }
                                b'm' => {
                                    if flag.contains(RegexFlag::M) {
                                        self.diagnostics.push(self.flag_err('m'));
                                    }
                                    flag |= RegexFlag::M;
                                }
                                b's' => {
                                    if flag.contains(RegexFlag::S) {
                                        self.diagnostics.push(self.flag_err('s'));
                                    }
                                    flag |= RegexFlag::S;
                                }
                                b'u' => {
                                    if flag.contains(RegexFlag::V) {
                                        self.diagnostics.push(self.flag_uv_err());
                                    }
                                    if flag.contains(RegexFlag::U) {
                                        self.diagnostics.push(self.flag_err('u'));
                                    }
                                    flag |= RegexFlag::U;
                                }
                                b'y' => {
                                    if flag.contains(RegexFlag::Y) {
                                        self.diagnostics.push(self.flag_err('y'));
                                    }
                                    flag |= RegexFlag::Y;
                                }
                                b'd' => {
                                    if flag.contains(RegexFlag::D) {
                                        self.diagnostics.push(self.flag_err('d'));
                                    }
                                    flag |= RegexFlag::D;
                                }
                                b'v' => {
                                    if flag.contains(RegexFlag::U) {
                                        self.diagnostics.push(self.flag_uv_err());
                                    }
                                    if flag.contains(RegexFlag::V) {
                                        self.diagnostics.push(self.flag_err('v'));
                                    }
                                    flag |= RegexFlag::V;
                                }
                                _ if self.cur_ident_part().is_some() => {
                                    self.diagnostics.push(
                                        ParseDiagnostic::new(
                                            "Invalid regex flag",
                                            chr_start..self.position + 1,
                                        )
                                        .with_hint("This is not a valid regex flag."),
                                    );
                                }
                                _ => break,
                            };
                        }

                        return JsSyntaxKind::JS_REGEX_LITERAL;
                    } else {
                        self.next_byte();
                    }
                }
                b'\\' => {
                    self.next_byte();

                    if self.next_byte_bounded().is_none() {
                        self.diagnostics.push(
                            ParseDiagnostic::new(
                                "expected a character after a regex escape, but found none",
                                self.position..self.position + 1,
                            )
                            .with_hint("expected a character following this"),
                        );

                        return JsSyntaxKind::JS_REGEX_LITERAL;
                    }
                }
                b'\r' | b'\n' => {
                    self.diagnostics.push(
                        ParseDiagnostic::new(
                            "unterminated regex literal",
                            self.position..self.position,
                        )
                        .with_detail(self.position..self.position, "...but the line ends here")
                        .with_detail(start..start + 1, "a regex literal starts there..."),
                    );

                    return JsSyntaxKind::JS_REGEX_LITERAL;
                }
                chr => {
                    if chr.is_ascii() {
                        self.advance(1);
                    } else {
                        let chr = self.current_char_unchecked();
                        if is_linebreak(chr) {
                            self.diagnostics.push(
                                ParseDiagnostic::new(
                                    "unterminated regex literal",
                                    self.position..self.position,
                                )
                                .with_detail(
                                    self.position..self.position,
                                    "...but the line ends here",
                                )
                                .with_detail(start..start + 1, "a regex literal starts there..."),
                            );
                            return JsSyntaxKind::JS_REGEX_LITERAL;
                        } else {
                            self.advance_char_unchecked();
                        }
                    }
                }
            }
        }

        self.diagnostics.push(
            ParseDiagnostic::new("unterminated regex literal", self.position..self.position)
                .with_detail(self.position..self.position, "...but the file ends here")
                .with_detail(start..start + 1, "a regex literal starts there..."),
        );

        JsSyntaxKind::JS_REGEX_LITERAL
    }

    #[inline]
    fn bin_or_assign(&mut self, bin: JsSyntaxKind, assign: JsSyntaxKind) -> JsSyntaxKind {
        if let Some(b'=') = self.next_byte() {
            self.next_byte();
            assign
        } else {
            bin
        }
    }

    #[inline]
    fn resolve_bang(&mut self) -> JsSyntaxKind {
        match self.next_byte() {
            Some(b'=') => {
                if let Some(b'=') = self.next_byte() {
                    self.next_byte();
                    NEQ2
                } else {
                    NEQ
                }
            }
            _ => T![!],
        }
    }

    #[inline]
    fn resolve_amp(&mut self) -> JsSyntaxKind {
        match self.next_byte() {
            Some(b'&') => {
                if let Some(b'=') = self.next_byte() {
                    self.next_byte();
                    AMP2EQ
                } else {
                    AMP2
                }
            }
            Some(b'=') => {
                self.next_byte();
                AMPEQ
            }
            _ => T![&],
        }
    }

    #[inline]
    fn resolve_plus(&mut self) -> JsSyntaxKind {
        match self.next_byte() {
            Some(b'+') => {
                self.next_byte();
                PLUS2
            }
            Some(b'=') => {
                self.next_byte();
                PLUSEQ
            }
            _ => T![+],
        }
    }

    #[inline]
    fn resolve_minus(&mut self) -> JsSyntaxKind {
        match self.next_byte() {
            Some(b'-') => {
                self.next_byte();
                MINUS2
            }
            Some(b'=') => {
                self.next_byte();
                MINUSEQ
            }
            _ => T![-],
        }
    }

    #[inline]
    fn resolve_less_than(&mut self) -> JsSyntaxKind {
        match self.next_byte() {
            Some(b'<') => {
                if let Some(b'=') = self.next_byte() {
                    self.next_byte();
                    SHLEQ
                } else {
                    SHL
                }
            }
            Some(b'=') => {
                self.next_byte();
                LTEQ
            }
            _ => T![<],
        }
    }

    #[inline]
    fn resolve_eq(&mut self) -> JsSyntaxKind {
        match self.next_byte() {
            Some(b'=') => {
                if let Some(b'=') = self.next_byte() {
                    self.next_byte();
                    EQ3
                } else {
                    EQ2
                }
            }
            Some(b'>') => {
                self.next_byte();
                FAT_ARROW
            }
            _ => T![=],
        }
    }

    #[inline]
    fn resolve_pipe(&mut self) -> JsSyntaxKind {
        match self.next_byte() {
            Some(b'|') => {
                if let Some(b'=') = self.next_byte() {
                    self.next_byte();
                    PIPE2EQ
                } else {
                    PIPE2
                }
            }
            Some(b'=') => {
                self.next_byte();
                PIPEEQ
            }
            _ => T![|],
        }
    }

    // Dont ask it to resolve the question of life's meaning because you'll be disappointed
    #[inline]
    fn resolve_question(&mut self) -> JsSyntaxKind {
        match self.next_byte() {
            Some(b'?') => {
                if let Some(b'=') = self.next_byte() {
                    self.next_byte();
                    QUESTION2EQ
                } else {
                    QUESTION2
                }
            }
            Some(b'.') => {
                // 11.7 Optional chaining punctuator
                if let Some(b'0'..=b'9') = self.peek_byte() {
                    T![?]
                } else {
                    self.next_byte();
                    QUESTIONDOT
                }
            }
            _ => T![?],
        }
    }

    #[inline]
    fn resolve_star(&mut self) -> JsSyntaxKind {
        match self.next_byte() {
            Some(b'*') => {
                if let Some(b'=') = self.next_byte() {
                    self.next_byte();
                    STAR2EQ
                } else {
                    STAR2
                }
            }
            Some(b'=') => {
                self.next_byte();
                STAREQ
            }
            _ => T![*],
        }
    }

    /// Lex the next token
    fn lex_token(&mut self) -> JsSyntaxKind {
        // Safety: we always call lex_token when we are at a valid char
        let byte = unsafe { self.current_unchecked() };
        let start = self.position;

        // A lookup table of `byte -> fn(l: &mut Lexer) -> Token` is exponentially slower than this approach
        // The speed difference comes from the difference in table size, a 2kb table is easily fit into cpu cache
        // While a 16kb table will be ejected from cache very often leading to slowdowns, this also allows LLVM
        // to do more aggressive optimizations on the match regarding how to map it to instructions
        let dispatched = lookup_byte(byte);

        match dispatched {
            WHS => self.consume_newline_or_whitespaces(),
            EXL => self.resolve_bang(),
            HAS => self.read_shebang(),
            PRC => self.bin_or_assign(T![%], T![%=]),
            Dispatch::AMP => self.resolve_amp(),
            PNO => self.eat_byte(T!['(']),
            PNC => self.eat_byte(T![')']),
            MUL => self.resolve_star(),
            PLS => self.resolve_plus(),
            COM => self.eat_byte(T![,]),
            MIN => self.resolve_minus(),
            SLH => self.read_slash(),
            // This simply changes state on the start
            TPL => self.eat_byte(T!['`']),
            ZER => {
                self.read_zero();
                self.verify_number_end()
            }
            PRD => {
                if self.peek_byte() == Some(b'.') && self.byte_at(2) == Some(b'.') {
                    self.advance(3);
                    return DOT3;
                }
                if let Some(b'0'..=b'9') = self.peek_byte() {
                    self.read_float();
                    self.verify_number_end()
                } else {
                    self.eat_byte(T![.])
                }
            }
            BSL => {
                if self.peek_byte() == Some(b'u') {
                    self.next_byte();
                    let res = if self.peek_byte() == Some(b'{') {
                        self.next_byte();
                        self.read_codepoint_escape()
                    } else {
                        self.read_unicode_escape(true)
                    };

                    match res {
                        Ok(chr) => {
                            if is_js_id_start(chr) {
                                self.current_flags |= TokenFlags::UNICODE_ESCAPE;
                                self.resolve_identifier(chr)
                            } else {
                                let err = ParseDiagnostic::new(  "unexpected unicode escape",
                                    start..self.position).with_hint("this escape is unexpected, as it does not designate the start of an identifier");
                                self.diagnostics.push(err);
                                self.next_byte();
                                JsSyntaxKind::ERROR_TOKEN
                            }
                        }
                        Err(_) => JsSyntaxKind::ERROR_TOKEN,
                    }
                } else {
                    let err = ParseDiagnostic::new(
                        format!("unexpected token `{}`", byte as char),
                        start..self.position + 1,
                    );
                    self.diagnostics.push(err);
                    self.next_byte();
                    JsSyntaxKind::ERROR_TOKEN
                }
            }
            QOT => {
                if self.consume_str_literal(false) {
                    JS_STRING_LITERAL
                } else {
                    ERROR_TOKEN
                }
            }
            IDT => self.resolve_identifier(byte as char),
            DIG => {
                self.read_number(false);
                self.verify_number_end()
            }
            COL => self.eat_byte(T![:]),
            SEM => self.eat_byte(T![;]),
            LSS => self.resolve_less_than(),
            EQL => self.resolve_eq(),
            // `>>`, `>=` etc handled by `ReLex::BinaryOperator`
            MOR => self.eat_byte(T![>]),
            QST => self.resolve_question(),
            BTO => self.eat_byte(T!('[')),
            BTC => self.eat_byte(T![']']),
            CRT => self.bin_or_assign(T![^], T![^=]),
            BEO => self.eat_byte(T!['{']),
            BEC => self.eat_byte(T!['}']),
            PIP => self.resolve_pipe(),
            TLD => self.eat_byte(T![~]),

            // A BOM can only appear at the start of a file, so if we haven't advanced at all yet,
            // perform the check. At any other position, the BOM is just considered plain whitespace.
            UNI if self.position == 0 && self.consume_potential_bom().is_some() => UNICODE_BOM,
            UNI => {
                let chr = self.current_char_unchecked();
                if is_linebreak(chr)
                    || (UNICODE_WHITESPACE_STARTS.contains(&byte) && UNICODE_SPACES.contains(&chr))
                {
                    self.consume_newline_or_whitespaces()
                } else {
                    self.advance(chr.len_utf8() - 1);
                    if is_js_id_start(chr) {
                        self.resolve_identifier(chr)
                    } else {
                        let err = ParseDiagnostic::new(
                            format!("Unexpected token `{}`", chr),
                            start..self.position + 1,
                        );
                        self.diagnostics.push(err);
                        self.next_byte();

                        JsSyntaxKind::ERROR_TOKEN
                    }
                }
            }
            AT_ => self.eat_byte(T![@]),
            _ => {
                let err = ParseDiagnostic::new(
                    format!("unexpected token `{}`", byte as char),
                    start..self.position + 1,
                );
                self.diagnostics.push(err);
                self.next_byte();

                JsSyntaxKind::ERROR_TOKEN
            }
        }
    }

    fn lex_template(&mut self, tagged: bool) -> JsSyntaxKind {
        let mut token: Option<JsSyntaxKind> = None;
        let start = self.position;

        while let Some(chr) = self.current_byte() {
            match chr {
                b'`' => {
                    if self.position == start {
                        self.next_byte();
                        token = Some(BACKTICK);
                        break;
                    } else {
                        token = Some(JsSyntaxKind::TEMPLATE_CHUNK);
                        break;
                    }
                }
                b'\\' => {
                    let diags_len = self.diagnostics.len();
                    self.consume_escape_sequence();

                    if tagged {
                        self.diagnostics.truncate(diags_len);
                    }
                }
                b'$' => {
                    if let Some(b'{') = self.peek_byte() {
                        if self.position == start {
                            self.advance(2);
                            token = Some(JsSyntaxKind::DOLLAR_CURLY);
                        } else {
                            token = Some(JsSyntaxKind::TEMPLATE_CHUNK);
                        }
                        break;
                    } else {
                        self.advance_char_unchecked();
                    }
                }
                chr => {
                    if chr.is_ascii() {
                        self.next_byte();
                    } else {
                        self.advance_char_unchecked();
                    }
                }
            }
        }

        match token {
            None => {
                let err =
                    ParseDiagnostic::new("unterminated template literal", start..self.position + 1);
                self.diagnostics.push(err);
                JsSyntaxKind::TEMPLATE_CHUNK
            }
            Some(token) => token,
        }
    }
}

/// Check if a char is a JS linebreak
fn is_linebreak(chr: char) -> bool {
    matches!(chr, '\n' | '\r' | '\u{2028}' | '\u{2029}')
}