1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
use crate::VariableId;
use crate::_impl_regulatory_graph::signed_directed_graph::{SdGraph, Sign};
use std::cmp::Ordering;
use std::collections::HashSet;
impl SdGraph {
/// Compute a feedback vertex set of the subgraph induced by the vertices in the
/// given `restriction` set.
///
/// A feedback vertex set is a set of vertices such that when these vertices are removed,
/// the resulting graph is acyclic.
///
/// The algorithm attempts to minimize the size of the resulting FVS, but it
/// is not guaranteed that the result is minimal, as the minimal FVS problem
/// is NP complete. Also note that while the *size* of the result is deterministic,
/// the actual vertices may not be as they depend on the iteration order of a `HashSet`.
///
/// The algorithm works by greedily picking vertices from the shortest cycles, prioritising
/// vertices with the highest overall degree.
pub fn restricted_feedback_vertex_set(
&self,
restriction: &HashSet<VariableId>,
) -> HashSet<VariableId> {
let mut result = HashSet::new();
// By preprocessing the state space into components, we avoid a lot of cycle detection
// that would otherwise just prove that the variable does not have any cycles.
let mut components = self.restricted_strongly_connected_components(restriction);
while let Some(mut scc) = components.pop() {
let mut best_candidate = (VariableId::from_index(0), usize::MAX, 0usize);
// Not particularly efficient but keeps the procedure deterministic.
// However, by a lucky coincidence, it also seems to on average improve the results :O
let mut scc_iter: Vec<VariableId> = scc.iter().cloned().collect();
scc_iter.sort();
for x in &scc_iter {
if let Some(cycle_length) = self.shortest_cycle_length(&scc, *x, best_candidate.1) {
if cycle_length == 1 {
// If the cycle has length one, it is guaranteed to appear in the FVS
// and we can just stop looking for the other cycles.
best_candidate = (*x, cycle_length, 0);
break;
}
let degree = self.approx_degree(*x, &scc);
match cycle_length.cmp(&best_candidate.1) {
Ordering::Less => {
// If this is the best cycle, just update it.
best_candidate = (*x, cycle_length, degree);
}
Ordering::Equal => {
// If this is equal to the best cycle, compare degrees.
if degree > best_candidate.2 {
best_candidate = (*x, cycle_length, degree);
}
}
_ => (),
}
}
}
assert_ne!(best_candidate.1, usize::MAX);
result.insert(best_candidate.0);
scc.remove(&best_candidate.0);
// Finally, run SCC decomposition again on the smaller component and "return" results
// back into processing.
components.append(&mut self.restricted_strongly_connected_components(&scc));
}
result
}
/// Compute a feedback vertex set of the desired parity, considered within the subgraph induced
/// by the vertices in `restriction`.
///
/// A parity feedback vertex set is a set of vertices such that when removed, the graph has
/// no cycles of the specified parity. See also `restriction_feedback_vertex_set` for notes
/// about determinism, minimality and complexity.
pub fn restricted_parity_feedback_vertex_set(
&self,
restriction: &HashSet<VariableId>,
parity: Sign,
) -> HashSet<VariableId> {
let mut result = HashSet::new();
let mut components = self.restricted_strongly_connected_components(restriction);
while let Some(mut scc) = components.pop() {
let mut best_candidate = (VariableId::from_index(0), usize::MAX, 0usize);
// Not particularly efficient but keeps the procedure deterministic.
// However, by a lucky coincidence, it also seems to on average improve the results :O
let mut scc_iter: Vec<VariableId> = scc.iter().cloned().collect();
scc_iter.sort();
for x in &scc_iter {
if let Some(cycle_length) =
self.shortest_parity_cycle_length(&scc, *x, parity, best_candidate.1)
{
if cycle_length == 1 {
// If the cycle has length one, it is guaranteed to appear in the FVS
// and we can just stop looking for any other cycles.
best_candidate = (*x, cycle_length, 0);
break;
}
let degree = self.approx_degree(*x, &scc);
match cycle_length.cmp(&best_candidate.1) {
Ordering::Less => {
// If this is the best cycle, just update it.
best_candidate = (*x, cycle_length, degree);
}
Ordering::Equal => {
// If this is equal to the best cycle, compare degrees.
if degree > best_candidate.2 {
best_candidate = (*x, cycle_length, degree);
}
}
_ => (),
}
}
}
if best_candidate.1 == usize::MAX {
// No cycles found.
continue;
}
result.insert(best_candidate.0);
scc.remove(&best_candidate.0);
components.append(&mut self.restricted_strongly_connected_components(&scc));
}
result
}
/// **(internal)** Compute the degree of a vertex within the given set.
pub(crate) fn approx_degree(
&self,
vertex: VariableId,
universe: &HashSet<VariableId>,
) -> usize {
let in_degree = self.predecessors[vertex.to_index()]
.iter()
.filter(|(x, _)| universe.contains(x))
.count();
let out_degree = self.successors[vertex.to_index()]
.iter()
.filter(|(x, _)| universe.contains(x))
.count();
in_degree + out_degree
}
}
#[cfg(test)]
mod tests {
use crate::RegulatoryGraph;
use crate::_impl_regulatory_graph::signed_directed_graph::SdGraph;
use crate::_impl_regulatory_graph::signed_directed_graph::Sign::{Negative, Positive};
#[test]
pub fn test_feedback_vertex_set() {
// Its a similar test graph to the one used for component computation,
// but `b_1 -> b_2` is a negative cycle and the `d`-component has both one positive and
// one negative cycle. Finally, `e` has a positive self-loop
let rg = RegulatoryGraph::try_from(
r#"
a -> c
b_1 -> b_2
b_2 -| b_1
b_2 -> c
c -> d_2
c -> e
d_1 -> d_3
d_3 -| d_2
d_2 -> d_1
d_1 -> d_2
e -> e
"#,
)
.unwrap();
let a = rg.find_variable("a").unwrap();
let b_1 = rg.find_variable("b_1").unwrap();
let b_2 = rg.find_variable("b_2").unwrap();
let c = rg.find_variable("c").unwrap();
let d_1 = rg.find_variable("d_1").unwrap();
let d_2 = rg.find_variable("d_2").unwrap();
let d_3 = rg.find_variable("d_3").unwrap();
let e = rg.find_variable("e").unwrap();
let graph = SdGraph::from(&rg);
let vertices = graph.mk_all_vertices();
let fvs = graph.restricted_feedback_vertex_set(&vertices);
let p_fvs = graph.restricted_parity_feedback_vertex_set(&vertices, Positive);
let n_fvs = graph.restricted_parity_feedback_vertex_set(&vertices, Negative);
assert!(!(fvs.contains(&a) || p_fvs.contains(&a) || n_fvs.contains(&a)));
assert!(!(fvs.contains(&c) || p_fvs.contains(&c) || n_fvs.contains(&c)));
assert_eq!(fvs.len(), 3);
assert_eq!(p_fvs.len(), 2);
assert_eq!(n_fvs.len(), 2);
assert!(fvs.contains(&e));
assert!(p_fvs.contains(&e));
assert!(!n_fvs.contains(&e));
assert!(fvs.contains(&b_1) || fvs.contains(&b_2));
assert!(!(p_fvs.contains(&b_1) || p_fvs.contains(&b_2)));
assert!(n_fvs.contains(&b_1) || n_fvs.contains(&b_2));
// d_3 can't appear in FVS or positive FVS, but it can appear in negative FVS.
assert!(fvs.contains(&d_1) || fvs.contains(&d_2));
assert!(p_fvs.contains(&d_1) || p_fvs.contains(&d_2));
assert!(n_fvs.contains(&d_1) || n_fvs.contains(&d_2) || n_fvs.contains(&d_3));
}
}