1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// Copyright 2021, 2022 Jeff Knaggs
// Licensed under the MIT license (http://opensource.org/licenses/MIT)
// This file may not be copied, modified, or distributed
// except according to those terms.

use crate::codec::Codec;
use crate::kmer::KmerIter;
use crate::seq::{Seq, SeqSlice};
use core::iter::Chain;
use core::marker::PhantomData;

/// An iterator over fixed-size non-overlapping chunks of a sequence
pub struct SeqChunks<'a, A: Codec> {
    slice: &'a SeqSlice<A>,
    width: usize,
    skip: usize,
    index: usize,
}

/// An iterator over the elements of a sequence
pub struct SeqIter<'a, A: Codec> {
    slice: &'a SeqSlice<A>,
    index: usize,
}

impl<'a, A: Codec> SeqSlice<A> {
    pub fn chain(
        self: &'a SeqSlice<A>,
        second: &'a SeqSlice<A>,
    ) -> Chain<SeqIter<'a, A>, SeqIter<'a, A>> {
        self.into_iter().chain(second)
    }
}

impl<A: Codec> SeqSlice<A> {
    /// Iterate over sliding windows of size K
    pub fn kmers<const K: usize>(&self) -> KmerIter<A, K> {
        KmerIter::<A, K> {
            slice: self,
            index: 0,
            len: self.len(),
            _p: PhantomData,
        }
    }

    /// Iterate over the sequence in reverse order
    pub fn rev(&self) -> RevIter<A> {
        RevIter {
            slice: self,
            index: self.len(),
        }
    }

    /// Iterate over the sequence in overlapping windows of a specified width
    ///
    /// This will panic if the length of the window is greater than the length of the sequence.
    ///
    /// Example:
    ///
    /// ```
    /// use bio_seq::prelude::*;
    ///
    /// let seq: Seq<Dna> = "ACTGATCG".try_into().unwrap();
    /// let windows: Vec<Seq<Dna>> = seq.windows(3).collect();
    /// assert_eq!(windows, vec!["ACT", "CTG", "TGA", "GAT", "ATC", "TCG"]);
    /// ```
    pub fn windows(&self, width: usize) -> SeqChunks<A> {
        SeqChunks {
            slice: self,
            width,
            skip: 1,
            index: 0,
        }
    }

    /// Iterate over the sequence in non-overlapping chunks of a specified width
    ///
    /// The last incomplete chunk will be excluded if the sequence length is not divisible by the specified
    /// width.
    ///
    /// Example:
    ///
    /// ```
    /// use bio_seq::prelude::*;
    ///
    /// let seq: Seq<Dna> = "ACTGATCG".try_into().unwrap();
    /// let chunks: Vec<Seq<Dna>> = seq.chunks(3).collect();
    /// assert_eq!(chunks, vec!["ACT", "GAT"]);
    /// ```
    pub fn chunks(&self, width: usize) -> SeqChunks<A> {
        SeqChunks {
            slice: self,
            width,
            skip: width,
            index: 0,
        }
    }
}

/// An iterator over the elements of a sequence in reverse order
pub struct RevIter<'a, A: Codec> {
    pub slice: &'a SeqSlice<A>,
    pub index: usize,
}

impl<'a, A: Codec> Iterator for RevIter<'a, A> {
    type Item = A;
    fn next(&mut self) -> Option<A> {
        let i = self.index;

        if self.index == 0 {
            return None;
        }
        self.index -= 1;
        Some(A::unsafe_from_bits(self.slice[i - 1].into()))
    }
}

impl<'a, A: Codec + core::fmt::Debug> Iterator for SeqChunks<'a, A> {
    type Item = &'a SeqSlice<A>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.index + self.width > self.slice.len() {
            return None;
        }
        let i = self.index;
        self.index += self.skip;
        if i + self.width > self.slice.len() {
            return None;
        }
        Some(&self.slice[i..i + self.width])
    }
}

impl<'a, A: Codec> IntoIterator for &'a Seq<A> {
    type Item = A;
    type IntoIter = SeqIter<'a, A>;

    fn into_iter(self) -> Self::IntoIter {
        SeqIter {
            slice: self,
            index: 0,
        }
    }
}

impl<'a, A: Codec> IntoIterator for &'a &Seq<A> {
    type Item = A;
    type IntoIter = SeqIter<'a, A>;

    fn into_iter(self) -> Self::IntoIter {
        SeqIter {
            slice: self,
            index: 0,
        }
    }
}

impl<'a, A: Codec> IntoIterator for &'a SeqSlice<A> {
    type Item = A;
    type IntoIter = SeqIter<'a, A>;

    fn into_iter(self) -> Self::IntoIter {
        SeqIter {
            slice: self,
            index: 0,
        }
    }
}

impl<'a, A: Codec> FromIterator<&'a SeqSlice<A>> for Vec<Seq<A>> {
    fn from_iter<T: IntoIterator<Item = &'a SeqSlice<A>>>(iter: T) -> Self {
        iter.into_iter().map(|slice| slice.to_owned()).collect()
    }
}

impl<'a, A: Codec> Iterator for SeqIter<'a, A> {
    type Item = A;
    fn next(&mut self) -> Option<A> {
        let i = self.index;
        if self.index >= self.slice.len() {
            return None;
        }
        self.index += 1;
        Some(A::unsafe_from_bits(self.slice[i].into()))
    }
}

#[cfg(test)]
mod tests {
    use crate::codec::dna::{Dna, Dna::*};
    use crate::codec::Complement;
    use crate::seq::{FromStr, Seq};

    #[test]
    fn seq_iter() {
        let seq: Seq<Dna> = dna!("ACTGATCGATAC");
        let elements: Vec<Dna> = seq.into_iter().collect();
        assert_eq!(elements, vec![A, C, T, G, A, T, C, G, A, T, A, C]);
        assert_ne!(elements, vec![A, C, T, G, A, T, C, G, A, T, A, C, A]);
        assert_ne!(elements, vec![C, A, T, A, G, C, T, A, G, T, C, A]);
    }

    #[test]
    fn rev_iter() {
        let seq: Seq<Dna> = dna!("ACTGATCGATAC");
        let rev_elements: Vec<Dna> = seq.rev().collect();
        assert_ne!(rev_elements, vec![A, C, T, G, A, T, C, G, A, T, A, C]);
        assert_eq!(rev_elements, vec![C, A, T, A, G, C, T, A, G, T, C, A]);
    }

    #[test]
    fn iterators() {
        let seq: Seq<Dna> = dna!("ACTGATCGATAC");
        let slice = &seq[2..9];
        let elements: Vec<Dna> = slice.into_iter().collect();
        assert_eq!(elements, vec![T, G, A, T, C, G, A]);
    }

    #[test]
    fn chunks() {
        let seq: Seq<Dna> = dna!("ACTGATCGATAC");
        let cs: Vec<Seq<Dna>> = seq.chunks(5).collect();
        assert_eq!(cs[0], dna!("ACTGA"));
        assert_eq!(cs[1], dna!("TCGAT"));
        assert_eq!(cs.len(), 2);
    }

    #[test]
    fn test_chain() {
        let seq1 = Seq::<Dna>::try_from("ATG").unwrap();
        let seq2 = Seq::<Dna>::try_from("TAC").unwrap();

        let chained = seq1.chain(&seq2);

        let expected_seq = Seq::<Dna>::try_from("ATGTAC").unwrap();
        for (a, b) in chained.zip(expected_seq.into_iter()) {
            assert_eq!(a, b);
        }

        let chained = seq1.chain(&seq2);
        for (a, b) in chained.map(|b| b.comp()).zip(expected_seq.into_iter()) {
            assert_ne!(a, b);
        }
    }

    #[test]
    fn windows() {
        let seq: Seq<Dna> = dna!("ACTGATACG");
        let windows: Vec<Seq<Dna>> = seq.windows(5).collect();
        assert_eq!(windows, vec!["ACTGA", "CTGAT", "TGATA", "GATAC", "ATACG"]);
    }
}