bio_seq/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
// Copyright 2021-2024 Jeff Knaggs
// Licensed under the MIT license (http://opensource.org/licenses/MIT)
// This file may not be copied, modified, or distributed
// except according to those terms.

//! Bit-packed and well-typed biological sequences
//!
//! The strength of rust is that we can safely separate the science (well-typed) and the engineering (bit-packed) of bioinformatics. An incremental benchmark improvement in the reverse complement algorithm should benefit the user of a succinct datastructure without anyone unwillingly learning about endianess.
//!
//! Contributions are very welcome. There's lots of low hanging fruit for optimisation and ideally we should only have to write them once!
//!
//! ## Sequences
//!
//! A [`Seq`](seq::Seq) is a heap allocated [sequence](seq) of symbols that owns its data. A [`SeqSlice`](seq::SeqSlice) is a read-only window into a `Seq`. Static [`SeqArray`s](seq::SeqArray) can be declared with the [`dna!`](macro@dna) and [`iupac!`](macro@iupac) macros but these should be dereferenced as `&'static SeqSlice`s.
//!
//! [`Kmer`s](mod@kmer) are shorter, fixed-length sequences. They generally fit in a single register and implement `Copy`. They are used for optimised algorithms on sequences and succinct datastructures. The default implementation uses a `usize` for storage. Using the 2-bit `Dna` encoding a `Kmer<Dna, 32>` occupies 64 bits.
//!
//! These sequence types are parameterised with [`Codec`s](`codec`) (e.g. `Seq<Dna>`, `Seq<Amino>`, etc.) that define how symbols are encoded into strings of bits and decoded as readable strings.
//!
//! ## Quick start
//!
//! Add `bio-seq` to `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! bio-seq = "0.13"
//! ```
//!
//! ```rust
//! use bio_seq::prelude::*;
//!
//! let seq = dna!("ATACGATCGATCGATCGATCCGT");
//!
//! // iterate over the 8-mers of the reverse complement
//! for kmer in seq.revcomp().kmers::<8>() {
//!     println!("{kmer}");
//! }
//!
//! // ACGGATCG
//! // CGGATCGA
//! // GGATCGAT
//! // GATCGATC
//! // ATCGATCG
//! // ...
//! ```
//!
//! Sequences are analogous to rust's string types and follow similar dereferencing conventions:
//!
//! ```rust
//! # use bio_seq::prelude::*;
//! // The `dna!` macro packs a static sequence with 2-bits per symbol at compile time:
//! let s: &'static str = "hello!";
//! let seq: &'static SeqSlice<Dna> = dna!("CGCTAGCTACGATCGCAT");
//!
//! // Sequences can also be copied into `Kmer`s:
//! let kmer: Kmer<Dna, 18> = dna!("CGCTAGCTACGATCGCAT").try_into().unwrap();
//! // or with the kmer! macro:
//! let kmer = kmer!("CGCTAGCTACGATCGCAT");
//!
//! // `Seq`s can be allocated on the heap like `String`s are:
//! let s: String = "hello!".into();
//! let seq: Seq<Dna> = dna!("CGCTAGCTACGATCGCAT").into();
//!
//! // Alternatively, a `Seq` can be fallibly encoded at runtime:
//! let seq: Seq<Dna> = "CGCTAGCTACGATCGCAT".try_into().unwrap();
//!
//! // `&SeqSlice` is analogous to `&str`:
//! let slice: &str = &s[1..3];
//! let seqslice: &SeqSlice<Dna> = &seq[2..4];
//! ```
//!
//! ## Bit-packed encodings
//!
//! Encodings of genomic symbols are implemented as [`Codec`s](codec). This crate provides four common ones:
//!   - [`codec::dna`]: 2-bit encoding of the four nucleotides
//!   - [`codec::text`]: 8-bit ASCII encoding of nucleotides, meant to be compatible with plaintext sequencing data formats
//!   - [`codec::iupac`]: 4-bit encoding of ambiguous nucleotide identities (the IUPAC ambiguity codes)
//!   - [`codec::amino`]: 6-bit encoding of amino acids
//!
//! Each of these encodings is designed to facilitate common bioinformatics tasks, such as minimising k-mers and implementing succinct datastructures. The [translation] module provides traits and methods for translating between nucleotide and amino acid sequences.
//!
//! Custom codecs can also be implemented with the `Codec` trait and derived on specially crafted enums.
//!

#![warn(clippy::pedantic)]
#![allow(clippy::must_use_candidate)]
#![allow(clippy::return_self_not_must_use)]
#![allow(clippy::module_name_repetitions)]
// the lint doesn't seem to recognise our implementations
#![allow(clippy::into_iter_without_iter)]
#![cfg_attr(feature = "simd", feature(portable_simd))]

#[cfg(not(target_pointer_width = "64"))]
compile_error!("bio-seq currently only supports 64-bit platforms");

use bitvec::prelude::*;

type Order = Lsb0;
type Bs = BitSlice<usize, Order>;
type Bv = BitVec<usize, Order>;
type Ba<const W: usize> = BitArray<[usize; W], Order>;

pub mod codec;
pub mod error;
#[macro_use]
pub mod kmer;
pub mod seq;

pub use bio_seq_derive::{dna, iupac};

#[doc(hidden)]
pub use bitvec::bitarr as __bio_seq_bitarr;

#[doc(hidden)]
pub use bitvec::prelude::Lsb0 as __bio_seq_Lsb0;

#[cfg(feature = "translation")]
pub mod translation;

pub mod prelude {
    pub use crate::codec::amino::Amino;
    pub use crate::codec::dna::Dna;
    pub use crate::codec::iupac::Iupac;
    pub use crate::codec::{Codec, Complement};

    pub use crate::kmer::Kmer;
    pub use crate::seq::{ReverseComplement, Seq, SeqArray, SeqSlice};

    #[cfg(feature = "translation")]
    pub use crate::translation;

    pub use core::str::FromStr;

    pub use crate::error::ParseBioError;

    pub use crate::{dna, iupac, kmer};

    #[doc(hidden)]
    pub use crate::__bio_seq_Lsb0;
    #[doc(hidden)]
    pub use crate::__bio_seq_bitarr;
}

#[cfg(test)]
mod tests {
    use crate::codec::dna::Dna::{A, C, G, T};
    use crate::prelude::*;
    use std::hash::{DefaultHasher, Hash, Hasher};

    #[test]
    fn alt_repr() {
        assert_eq!(iupac!("-").nth(0), Iupac::X);
    }

    #[test]
    fn into_usize() {
        let a: usize = dna!("ACGT").to_owned().into_raw()[0];
        assert_eq!(a, 0b11_10_01_00);

        let b: usize = dna!("CGCG").to_owned().into_raw()[0];
        assert_eq!(b, 0b10_01_10_01);

        let c: usize = Seq::from(&vec![T, T]).into();
        assert_eq!(c, 0b11_11);

        let d: usize = Seq::<Dna>::from_str("TCA").unwrap().into();
        assert_eq!(d, 0b00_01_11);

        let e: usize = Seq::<Dna>::from_str("TGA").unwrap().into();
        assert_eq!(e, 0b00_10_11);

        let f: usize = Seq::from(&vec![C, G, T, A, C, G, A, T]).into();
        assert_eq!(f, 0b11_00_10_01_00_11_10_01);

        let g: usize = Seq::from(&vec![A]).into();
        assert_eq!(g, 0b00);
    }

    #[test]
    fn test_display_aminos() {
        let a: Seq<Amino> = Seq::from_str("DCMNLKG*HI").unwrap();
        assert_eq!(format!("{a}"), "DCMNLKG*HI");
    }
    #[test]
    fn test_display_dna() {
        let seq = Seq::from(&vec![A, C, G, T, T, A, T, C]);
        assert_eq!(format!("{}", &seq), "ACGTTATC");
        assert_eq!(format!("{}", dna!("ACGT")), "ACGT");
    }

    #[test]
    fn iterate_bases() {
        let seq = dna!("ACGTACGT");
        assert_eq!(
            seq.into_iter().collect::<Vec<Dna>>(),
            vec![A, C, G, T, A, C, G, T]
        );
    }

    #[test]
    fn from_string() {
        let seq = Seq::<Dna>::from_str("ACGTACGT").unwrap();
        assert_eq!(
            seq.into_iter().collect::<Vec<Dna>>(),
            vec![A, C, G, T, A, C, G, T]
        );
    }
    #[test]
    fn rev_seq() {
        let seq = dna!("ACGTACGT");
        assert_eq!(
            seq.rev().collect::<Vec<Dna>>(),
            vec![T, G, C, A, T, G, C, A]
        );
        assert_eq!(
            iupac!("GN-").rev().collect::<Vec<Iupac>>(),
            vec![Iupac::X, Iupac::N, Iupac::G]
        );

        assert_eq!(
            Seq::<Amino>::try_from("DCMNLKGHI")
                .unwrap()
                .rev()
                .collect::<Vec<Amino>>(),
            vec![
                Amino::I,
                Amino::H,
                Amino::G,
                Amino::K,
                Amino::L,
                Amino::N,
                Amino::M,
                Amino::C,
                Amino::D
            ]
        );
    }
    #[test]
    fn iterate_kmers() {
        let seq = dna!("ACGTAAGGGG");
        for (kmer, answer) in seq
            .kmers::<4>()
            .zip(["ACGT", "CGTA", "GTAA", "TAAG", "AAGG", "AGGG", "GGGG"])
        {
            assert_eq!(format!("{}", kmer), answer);
        }
    }

    #[test]
    fn iterate_kmer8() {
        let seq = dna!("AAAACCCCGGGG");
        for (kmer, answer) in seq
            .kmers::<8>()
            .zip(["AAAACCCC", "AAACCCCG", "AACCCCGG", "ACCCCGGG", "CCCCGGGG"])
        {
            assert_eq!(format!("{}", kmer), answer);
        }
    }

    #[test]
    fn iterate_kmer4() {
        let seq = dna!("AAAACCCCGGGGTTTT");
        for (kmer, answer) in seq.kmers::<4>().zip([
            "AAAA", "AAAC", "AACC", "ACCC", "CCCC", "CCCG", "CCGG", "CGGG", "GGGG", "GGGT", "GGTT",
            "GTTT", "TTTT",
        ]) {
            assert_eq!(format!("{}", kmer), answer);
        }
    }

    #[test]
    fn iupac_bitwise_ops() {
        let s1: &SeqSlice<Iupac> = iupac!("AS-GYTNA");
        let s2: &SeqSlice<Iupac> = iupac!("ANTGCAT-");

        let s3: &SeqSlice<Iupac> = iupac!("ACGTSWKM");
        let s4: &SeqSlice<Iupac> = iupac!("WKMSTNNA");

        assert_eq!(s1 | s2, iupac!("ANTGYWNA"));
        assert_eq!(s3 & s4, iupac!("A----WKA"));
    }
    #[test]
    fn min_sequence() {
        let seq = dna!("GCTCGATCGTAAAAAATCGTATT");

        let minimised = seq.kmers::<8>().min().unwrap();
        assert_eq!(minimised, Kmer::try_from(dna!("GTAAAAAA")).unwrap());
    }

    #[test]
    fn hash_minimiser() {
        use core::cmp::min;

        fn hash<T: Hash>(seq: T) -> u64 {
            let mut hasher = DefaultHasher::new();
            seq.hash(&mut hasher);
            hasher.finish()
        }

        let seq =
            dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCTAAAAAAAAAAAAAAAAGGGGTGTGTGGGTTGTGGAGGAGAGAGAGCC");

        //        let minimised = seq.kmers::<16>().map(hash).min().unwrap();

        let (minimiser_rc, min_hash_rc) = seq
            .revcomp()
            .kmers::<16>()
            .map(|kmer| (kmer, hash(&kmer)))
            .min_by_key(|&(_, hash)| hash)
            .unwrap();

        let (minimiser, min_hash) = seq
            .kmers::<16>()
            .map(|kmer| (kmer, hash(&kmer)))
            .min_by_key(|&(_, hash)| hash)
            .unwrap();

        //        let x = min(min_hash, min_hash_rc);

        let (canonical_minimiser, canonical_hash) = seq
            .kmers::<16>()
            .map(|kmer| {
                let canonical_hash = min(hash(&kmer), hash(&kmer.revcomp()));
                (kmer, canonical_hash)
            })
            .min_by_key(|&(_, hash)| hash)
            .unwrap();

        println!("{minimiser_rc} {min_hash_rc}\n{minimiser} {min_hash}\n{canonical_minimiser} {canonical_hash}");
        assert_eq!(min_hash_rc, canonical_hash);
        assert_eq!(minimiser_rc, canonical_minimiser.revcomp());
    }

    #[test]
    fn hash_characteristics() {
        fn hash<T: Hash>(chunk: T) -> u64 {
            let mut hasher = DefaultHasher::new();
            chunk.hash(&mut hasher);
            hasher.finish()
        }

        let s1 = dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCT");
        let s2 = dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCTA");

        let q1: Seq<Dna> = dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCT").into();
        let q2: Seq<Dna> = dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCTA").into();

        let s3 = dna!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");
        let s4 = dna!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");

        let q3 = dna!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");
        let q4 = dna!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");

        let l3: &SeqSlice<Dna> = &q3;
        let l3_a: &SeqSlice<Dna> = &q4[1..];
        let l3_b: &SeqSlice<Dna> = &q4[..32];
        let l4: &SeqSlice<Dna> = &q4;

        let k1: Kmer<Dna, 32> = s1.try_into().unwrap();
        let k1_a: Kmer<Dna, 32> = s1.try_into().unwrap();

        let k3: Kmer<Dna, 32> = s3.try_into().unwrap();

        assert_eq!(hash(&l3), hash(q3));
        assert_eq!(hash(&l3), hash(&l3_a));
        assert_eq!(hash(&l3_a), hash(&l3_b));

        assert_eq!(hash(&s2), hash(&q2));

        assert_eq!(hash(&s1), hash(s1));
        assert_eq!(hash(s2), hash(&s2));
        assert_ne!(hash(&s4), hash(&s3));

        assert_ne!(hash(&l3), hash(&l4));
        assert_ne!(hash(&l3_a), hash(&l4));

        assert_ne!(hash(&q2), hash(&q1));

        assert_eq!(hash(q3), hash(s3));
        assert_eq!(hash(s1), hash(&q1));
        assert_ne!(hash(s3), hash(s4));

        assert_ne!(hash(&k3), hash(&k1));
        assert_eq!(hash(&k1_a), hash(&k1));
        assert_eq!(hash(s1), hash(&k1));
    }

    #[test]
    fn sequence_type_hashes() {
        fn hash<T: Hash>(chunk: &T) -> u64 {
            let mut hasher = DefaultHasher::new();
            chunk.hash(&mut hasher);
            hasher.finish()
        }

        let seq_arr: &SeqSlice<Dna> = dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCT");
        let seq: Seq<Dna> = seq_arr.into();
        let seq_slice: &SeqSlice<Dna> = &seq;
        let kmer: Kmer<Dna, 32> = seq_arr.try_into().unwrap();

        assert_eq!(hash(&seq_arr), hash(&seq));
        assert_eq!(hash(&seq), hash(&seq_slice));
        assert_eq!(hash(&seq_slice), hash(&kmer));
    }

    #[test]
    fn nth_chars() {
        assert_eq!(iupac!("ACGTRYSWKMBDHVN-").nth(0), Iupac::A);
        assert_ne!(iupac!("ACGTRYSWKMBDHVN-").nth(0), Iupac::C);
        assert_eq!(iupac!("ACGTRYSWKMBDHVN-").nth(15), Iupac::X);
        assert_eq!(iupac!("ACGTRYSWKMBDHVN-").nth(3), Iupac::from(Dna::T));
        assert_ne!(iupac!("ACGTRYSWKMBDHVN-").nth(3), Iupac::from(Dna::G));

        assert_eq!(
            Seq::<Amino>::try_from("DCMNLKGHI").unwrap().nth(1),
            Amino::C
        );
        assert_ne!(
            Seq::<Amino>::try_from("DCMNLKGHI").unwrap().nth(7),
            Amino::I
        );
    }

    #[test]
    fn colexicographic_order() {
        for (i, e) in ["AA", "CA", "GA", "TA", "AC", "CC", "GC", "TC"]
            .iter()
            .enumerate()
        {
            assert_eq!(format!("{}", Kmer::<Dna, 2>::from(i)), format!("{}", e));
            assert_eq!(Kmer::<Dna, 2>::from(i), *e);
        }
    }

    #[test]
    fn sequence_type_equality() {
        let raw_a = "AATTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATAGGACGATCAGCACCATAAGAACAA";
        let raw_b = "AATTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATAGGACGATCAGCACCATAAGAACAAA";
        let raw_c = "AATTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATAGGACGATCAGCACCATAAGAACAAA";
        let raw_d = "AATTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATAGGACGATCAGCACCATAAGAACAAAA";

        assert_eq!(raw_a.len(), 63);
        assert_eq!(raw_b.len(), 64);
        assert_eq!(raw_d.len(), 65);

        assert_eq!(raw_c, raw_b);
        assert_eq!(raw_c, &raw_b[..]);

        assert_ne!(raw_b, raw_d);
        assert_ne!(raw_a, raw_b);

        // Seq

        let seq_a: Seq<Dna> = raw_a.try_into().unwrap();
        let seq_b: Seq<Dna> = raw_b.try_into().unwrap();
        let seq_c: Seq<Dna> = raw_c.try_into().unwrap();
        let seq_d: Seq<Dna> = raw_d.try_into().unwrap();

        assert_eq!(seq_a.len(), raw_a.len());
        assert_eq!(seq_d.len(), raw_d.len());

        assert_eq!(seq_c, seq_b);
        assert_eq!(seq_c, &seq_b);

        assert_ne!(seq_a, &seq_b);
        assert_ne!(seq_a, seq_b);
        assert_ne!(seq_c, seq_d);

        // SeqSlice

        let slice_a: &SeqSlice<Dna> = &seq_a;
        let slice_b: &SeqSlice<Dna> = &seq_b;
        let slice_c: &SeqSlice<Dna> = &seq_c;
        let slice_d: &SeqSlice<Dna> = &seq_d;

        assert_eq!(slice_a.len(), raw_a.len());
        assert_eq!(slice_d.len(), raw_d.len());

        assert_eq!(slice_c, slice_b);
        assert_eq!(slice_c, &slice_b[..]);

        assert_ne!(slice_a, slice_b);
        assert_ne!(slice_c, slice_d);
        assert_ne!(slice_c, &slice_d[..]);

        // SeqArray references

        let array_a = dna!("AATTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATAGGACGATCAGCACCATAAGAACAA");
        let array_b = dna!("AATTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATAGGACGATCAGCACCATAAGAACAAA");
        let array_c: &'static SeqSlice<Dna> =
            dna!("AATTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATAGGACGATCAGCACCATAAGAACAAA");
        let array_d: &'static SeqSlice<Dna> =
            dna!("AATTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATAGGACGATCAGCACCATAAGAACAAAA");

        assert_eq!(array_a.len(), raw_a.len());
        assert_eq!(array_d.len(), raw_d.len());

        assert_eq!(array_c, array_b);

        assert_ne!(array_a, array_b);
        assert_ne!(array_c, array_d);

        // Kmers

        let kmer_ax_32: Kmer<Dna, 32> = kmer!("AATTGTGGGTTCGTCTGCGGCTCCGCCCTTAG");
        let kmer_bx_32 = Kmer::<Dna, 32>::from_str(&raw_b[..32]).unwrap();

        let kmer_x_32: Kmer<Dna, 32> = kmer!("AATTGTGGGTTCGTCTGCGCCTCCGCCCTTAG");

        assert_eq!(kmer_ax_32.len(), 32);

        assert_eq!(kmer_ax_32, kmer_bx_32);
        assert_ne!(kmer_ax_32, kmer_x_32);

        let kmer_b_64 = Kmer::<Dna, 64, u128>::from_str(&raw_b).unwrap();
        let kmer_cx_64 = Kmer::<Dna, 64, u128>::from_str(&raw_d[..64]).unwrap();
        let kmer_dx_64 = Kmer::<Dna, 64, u128>::from_str(&raw_d[1..]).unwrap();

        assert_eq!(kmer_cx_64.len(), 64);

        assert_eq!(kmer_b_64, kmer_cx_64);
        assert_ne!(kmer_b_64, kmer_dx_64);

        // Cross-type equality:

        assert_eq!(seq_c, slice_b);
        assert_eq!(seq_c, *array_b);
        //        assert_eq!(seq_c, kmer_b_64);

        assert_eq!(&seq_c, slice_b);
        assert_eq!(&seq_c, array_b);
        //        assert_eq!(&seq_c, kmer_b_64);

        assert_eq!(slice_c, seq_b);
        assert_eq!(slice_c, &seq_b);
        assert_eq!(&slice_c, array_b);
        //        assert_eq!(slice_c, kmer_b_64);

        assert_eq!(array_c, &seq_b);
        assert_eq!(array_c, seq_b);
        assert_eq!(array_c, slice_b);
        //        assert_eq!(array_c, kmer_b_64);

        //        assert_eq!(kmer_b_64, &seq_c);
        //        assert_eq!(kmer_b_64, seq_c);
        //        assert_eq!(kmer_b_64, slice_c);
        //        assert_eq!(kmer_b_64, array_c);

        // Cross-type inequality (shorter):

        assert_ne!(&seq_a, slice_b);
        assert_ne!(&seq_a, array_b);
        assert_ne!(seq_a, slice_b);
        assert_ne!(seq_a, array_b);
        //        assert_ne!(seq_a, kmer_b_64);
        //        assert_ne!(&seq_a, kmer_b_64);

        assert_ne!(slice_a, &seq_b);
        assert_ne!(slice_a, seq_b);
        assert_ne!(&slice_a, array_b);
        //        assert_ne!(slice_a, kmer_b_64);

        assert_ne!(array_a, &seq_b);
        assert_ne!(array_a, seq_b);
        assert_ne!(array_a, slice_b);
        //        assert_ne!(array_a, kmer_b_64);

        //        assert_ne!(kmer_b_64, &seq_a);
        //        assert_ne!(kmer_b_64, seq_a);
        //        assert_ne!(kmer_b_64, slice_a);
        //        assert_ne!(kmer_b_64, array_a);

        // Cross-type inequality (longer):

        assert_ne!(seq_d, slice_b);
        assert_ne!(seq_d, array_b);
        //        assert_ne!(seq_d, kmer_b_64);
        assert_ne!(&seq_d, slice_b);
        assert_ne!(&seq_d, array_b);
        //        assert_ne!(&seq_d, kmer_b_64);

        assert_ne!(slice_d, &seq_b);
        assert_ne!(slice_d, seq_b);
        assert_ne!(&slice_d, array_b);
        //        assert_ne!(slice_d, kmer_b_64);

        assert_ne!(array_d, &seq_b);
        assert_ne!(array_d, seq_b);

        assert_ne!(slice_b, array_d);
        assert_ne!(array_d, slice_b);
        //        assert_ne!(array_d, kmer_b_64);

        //        assert_ne!(kmer_b_64, &seq_d);
        //        assert_ne!(kmer_b_64, seq_d);
        //        assert_ne!(kmer_b_64, slice_d);
        //        assert_ne!(kmer_b_64, array_d);
    }
}