bio_seq/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
// Copyright 2021-2024 Jeff Knaggs
// Licensed under the MIT license (http://opensource.org/licenses/MIT)
// This file may not be copied, modified, or distributed
// except according to those terms.
//! Bit-packed and well-typed biological sequences
//!
//! The strength of rust is that we can safely separate the science (well-typed) and the engineering (bit-packed) of bioinformatics. An incremental benchmark improvement in the reverse complement algorithm should benefit the user of a succinct datastructure without anyone unwillingly learning about endianess.
//!
//! Contributions are very welcome. There's lots of low hanging fruit for optimisation and ideally we should only have to write them once!
//!
//! ## Sequences
//!
//! A [`Seq`](seq::Seq) is a heap allocated [sequence](seq) of symbols that owns its data. A [`SeqSlice`](seq::SeqSlice) is a read-only window into a `Seq`. Static [`SeqArray`s](seq::SeqArray) can be declared with the [`dna!`](macro@dna) and [`iupac!`](macro@iupac) macros. Generally these should be dereferenced as `&'static SeqSlice`s or kmers.
//!
//! [`Kmer`](mod@kmer)s are shorter, fixed-length sequences. They generally fit in a single register and implement `Copy`. They are used for optimised algorithms on sequences and succinct datastructures. The default implementation uses a `usize` for storage. Using the 2-bit `Dna` encoding a `Kmer<Dna, 32>` occupies 64 bits.
//!
//! These sequence types are parameterised with [encodings](`codec`) (e.g. `Seq<Dna>`, `Seq<Amino>`, etc.) that define how symbols are encoded into strings of bits and decoded as readable strings.
//!
//! ## Quick start
//!
//! Add `bio-seq` to `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! bio-seq = "0.13"
//! ```
//!
//! ```rust
//! use bio_seq::prelude::*;
//!
//! let seq = dna!("ATACGATCGATCGATCGATCCGT");
//!
//! // iterate over the 8-mers of the reverse complement
//! for kmer in seq.revcomp().kmers::<8>() {
//! println!("{kmer}");
//! }
//!
//! // ACGGATCG
//! // CGGATCGA
//! // GGATCGAT
//! // GATCGATC
//! // ATCGATCG
//! // ...
//! ```
//!
//! Sequences are analogous to rust's string types and follow similar dereferencing conventions.
//!
//! ```rust
//! # use bio_seq::prelude::*;
//! // The `dna!` macro packs a static sequence with 2-bits per symbol at compile time.
//! // This is analogous to rust's string literals:
//! let s: &'static str = "hello!";
//! let seq: &'static SeqSlice<Dna> = dna!("CGCTAGCTACGATCGCAT");
//!
//! // Static sequences can also be copied as kmers
//! let kmer: Kmer<Dna, 18> = dna!("CGCTAGCTACGATCGCAT").into();
//! // or with the kmer! macro:
//! let kmer = kmer!("CGCTAGCTACGATCGCAT");
//!
//! // `Seq`s can be allocated on the heap like `String`s are:
//! let s: String = "hello!".into();
//! let seq: Seq<Dna> = dna!("CGCTAGCTACGATCGCAT").into();
//!
//! // Alternatively, a `Seq` can be fallibly encoded at runtime:
//! let seq: Seq<Dna> = "CGCTAGCTACGATCGCAT".try_into().unwrap();
//!
//! // &SeqSlices are analogous to &str, String slices:
//! let slice: &str = &s[1..3];
//! let seqslice: &SeqSlice<Dna> = &seq[2..4];
//! ```
//!
//! ## Bit-packed encodings
//!
//! Encodings of genomic symbols are implemented as "[`Codecs`](codec)." This crate provides four common ones:
//! - [`codec::dna`]: 2-bit encoding of the four nucleotides
//! - [`codec::text`]: 8-bit ASCII encoding of nucleotides, meant to be compatible with plaintext sequencing data formats
//! - [`codec::iupac`]: 4-bit encoding of ambiguous nucleotide identities (the IUPAC ambiguity codes)
//! - [`codec::amino`]: 6-bit encoding of amino acids
//!
//! Each of these encodings is designed to facilitate common bioinformatics tasks, such as minimising k-mers and implementing succinct datastructures. The [translation] module provides traits and methods for translating between nucleotide and amino acid sequences.
//!
//! Custom codecs can also be implemented with the `Codec` trait and derived on well crafted enums.
//!
#![warn(clippy::pedantic)]
#![allow(clippy::must_use_candidate)]
#![allow(clippy::return_self_not_must_use)]
#![allow(clippy::module_name_repetitions)]
// the lint doesn't seem to recognise our implementations
#![allow(clippy::into_iter_without_iter)]
#![cfg_attr(feature = "simd", feature(portable_simd))]
#[cfg(not(target_pointer_width = "64"))]
compile_error!("bio-seq currently only supports 64-bit platforms");
use bitvec::prelude::*;
type Order = Lsb0;
type Bs = BitSlice<usize, Order>;
type Bv = BitVec<usize, Order>;
type Ba<const W: usize> = BitArray<[usize; W], Order>;
pub mod codec;
pub mod error;
#[macro_use]
pub mod kmer;
pub mod seq;
//#[macro_use]
pub use bio_seq_derive::{dna, iupac};
#[doc(hidden)]
pub use bitvec::bitarr as __bio_seq_bitarr;
#[doc(hidden)]
pub use bitvec::prelude::Lsb0 as __bio_seq_Lsb0;
#[cfg(feature = "translation")]
pub mod translation;
pub mod prelude {
pub use crate::codec::amino::Amino;
pub use crate::codec::dna::Dna;
pub use crate::codec::iupac::Iupac;
pub use crate::codec::{Codec, Complement};
pub use crate::kmer::Kmer;
pub use crate::seq::{ReverseComplement, Seq, SeqArray, SeqSlice};
#[cfg(feature = "translation")]
pub use crate::translation;
pub use core::str::FromStr;
pub use crate::error::ParseBioError;
pub use crate::{dna, iupac, kmer};
#[doc(hidden)]
pub use crate::__bio_seq_Lsb0;
#[doc(hidden)]
pub use crate::__bio_seq_bitarr;
}
#[cfg(test)]
mod tests {
use crate::codec::dna::Dna::{A, C, G, T};
use crate::prelude::*;
use std::hash::{DefaultHasher, Hash, Hasher};
#[test]
fn alt_repr() {
assert_eq!(iupac!("-").nth(0), Iupac::X);
}
/*
#[test]
fn into_usize() {
let a: usize = dna!("ACGT").into();
assert_eq!(a, 0b11_10_01_00);
let b: usize = dna!("CGCG").into();
assert_eq!(b, 0b10_01_10_01);
let c: usize = Seq::from(&vec![T, T]).into();
assert_eq!(c, 0b11_11);
let d: usize = Seq::<Dna>::from_str("TCA").unwrap().into();
assert_eq!(d, 0b00_01_11);
let e: usize = Seq::<Dna>::from_str("TGA").unwrap().into();
assert_eq!(e, 0b00_10_11);
let f: usize = Seq::from(&vec![C, G, T, A, C, G, A, T]).into();
assert_eq!(f, 0b11_00_10_01_00_11_10_01);
let g: usize = Seq::from(&vec![A]).into();
assert_eq!(g, 0b00);
}
*/
#[test]
fn test_display_aminos() {
let a: Seq<Amino> = Seq::from_str("DCMNLKG*HI").unwrap();
assert_eq!(format!("{a}"), "DCMNLKG*HI");
}
#[test]
fn test_display_dna() {
let seq = Seq::from(&vec![A, C, G, T, T, A, T, C]);
assert_eq!(format!("{}", &seq), "ACGTTATC");
assert_eq!(format!("{}", dna!("ACGT")), "ACGT");
}
#[test]
fn iterate_bases() {
let seq = dna!("ACGTACGT");
assert_eq!(
seq.into_iter().collect::<Vec<Dna>>(),
vec![A, C, G, T, A, C, G, T]
);
}
#[test]
fn from_string() {
let seq = Seq::<Dna>::from_str("ACGTACGT").unwrap();
assert_eq!(
seq.into_iter().collect::<Vec<Dna>>(),
vec![A, C, G, T, A, C, G, T]
);
}
#[test]
fn rev_seq() {
let seq = dna!("ACGTACGT");
assert_eq!(
seq.rev().collect::<Vec<Dna>>(),
vec![T, G, C, A, T, G, C, A]
);
assert_eq!(
iupac!("GN-").rev().collect::<Vec<Iupac>>(),
vec![Iupac::X, Iupac::N, Iupac::G]
);
assert_eq!(
Seq::<Amino>::try_from("DCMNLKGHI")
.unwrap()
.rev()
.collect::<Vec<Amino>>(),
vec![
Amino::I,
Amino::H,
Amino::G,
Amino::K,
Amino::L,
Amino::N,
Amino::M,
Amino::C,
Amino::D
]
);
}
#[test]
fn iterate_kmers() {
let seq = dna!("ACGTAAGGGG");
for (kmer, answer) in seq
.kmers::<4>()
.zip(["ACGT", "CGTA", "GTAA", "TAAG", "AAGG", "AGGG", "GGGG"])
{
assert_eq!(format!("{}", kmer), answer);
}
}
#[test]
fn iterate_kmer8() {
let seq = dna!("AAAACCCCGGGG");
for (kmer, answer) in seq
.kmers::<8>()
.zip(["AAAACCCC", "AAACCCCG", "AACCCCGG", "ACCCCGGG", "CCCCGGGG"])
{
assert_eq!(format!("{}", kmer), answer);
}
}
#[test]
fn iterate_kmer4() {
let seq = dna!("AAAACCCCGGGGTTTT");
for (kmer, answer) in seq.kmers::<4>().zip([
"AAAA", "AAAC", "AACC", "ACCC", "CCCC", "CCCG", "CCGG", "CGGG", "GGGG", "GGGT", "GGTT",
"GTTT", "TTTT",
]) {
assert_eq!(format!("{}", kmer), answer);
}
}
#[test]
fn iupac_bitwise_ops() {
let s1: &SeqSlice<Iupac> = iupac!("AS-GYTNA");
let s2: &SeqSlice<Iupac> = iupac!("ANTGCAT-");
let s3: &SeqSlice<Iupac> = iupac!("ACGTSWKM");
let s4: &SeqSlice<Iupac> = iupac!("WKMSTNNA");
assert_eq!(s1 | s2, iupac!("ANTGYWNA"));
assert_eq!(s3 & s4, iupac!("A----WKA"));
}
#[test]
fn min_sequence() {
let seq = dna!("GCTCGATCGTAAAAAATCGTATT");
let minimised = seq.kmers::<8>().min().unwrap();
assert_eq!(minimised, Kmer::from(dna!("GTAAAAAA")));
}
#[test]
fn hash_minimiser() {
use core::cmp::min;
fn hash<T: Hash>(seq: T) -> u64 {
let mut hasher = DefaultHasher::new();
seq.hash(&mut hasher);
hasher.finish()
}
let seq =
dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCTAAAAAAAAAAAAAAAAGGGGTGTGTGGGTTGTGGAGGAGAGAGAGCC");
// let minimised = seq.kmers::<16>().map(hash).min().unwrap();
let (minimiser_rc, min_hash_rc) = seq
.revcomp()
.kmers::<16>()
.map(|kmer| (kmer, hash(&kmer)))
.min_by_key(|&(_, hash)| hash)
.unwrap();
let (minimiser, min_hash) = seq
.kmers::<16>()
.map(|kmer| (kmer, hash(&kmer)))
.min_by_key(|&(_, hash)| hash)
.unwrap();
// let x = min(min_hash, min_hash_rc);
let (canonical_minimiser, canonical_hash) = seq
.kmers::<16>()
.map(|kmer| {
let canonical_hash = min(hash(&kmer), hash(&kmer.revcomp()));
(kmer, canonical_hash)
})
.min_by_key(|&(_, hash)| hash)
.unwrap();
println!("{minimiser_rc} {min_hash_rc}\n{minimiser} {min_hash}\n{canonical_minimiser} {canonical_hash}");
assert_eq!(min_hash_rc, canonical_hash);
assert_eq!(minimiser_rc, canonical_minimiser.revcomp());
}
#[test]
fn hash_characteristics() {
fn hash<T: Hash>(chunk: &T) -> u64 {
let mut hasher = DefaultHasher::new();
chunk.hash(&mut hasher);
hasher.finish()
}
let s1 = dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCT");
let s2 = dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCTA");
let q1: Seq<Dna> = dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCT").into();
let q2: Seq<Dna> = dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCTA").into();
let s3 = dna!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");
let s4 = dna!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");
let q3 = dna!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");
let q4 = dna!("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");
let l3: &SeqSlice<Dna> = &q3;
let l3_a: &SeqSlice<Dna> = &q4[1..];
let l3_b: &SeqSlice<Dna> = &q4[..32];
let l4: &SeqSlice<Dna> = &q4;
let k1: Kmer<Dna, 32> = s1.into();
let k1_a: Kmer<Dna, 32> = s1.into();
let k3: Kmer<Dna, 32> = s3.into();
assert_eq!(hash(&l3), hash(q3));
assert_eq!(hash(&l3), hash(&l3_a));
assert_eq!(hash(&l3_a), hash(&l3_b));
assert_eq!(hash(&s2), hash(&q2));
assert_eq!(hash(&s1), hash(s1));
assert_eq!(hash(s2), hash(&s2));
assert_ne!(hash(&s4), hash(&s3));
assert_ne!(hash(&l3), hash(&l4));
assert_ne!(hash(&l3_a), hash(&l4));
assert_ne!(hash(&q2), hash(&q1));
assert_eq!(hash(q3), hash(s3));
assert_eq!(hash(s1), hash(&q1));
assert_ne!(hash(s3), hash(s4));
assert_ne!(hash(&k3), hash(&k1));
assert_eq!(hash(&k1_a), hash(&k1));
assert_eq!(hash(s1), hash(&k1));
}
#[test]
fn sequence_type_hashes() {
fn hash<T: Hash>(chunk: &T) -> u64 {
let mut hasher = DefaultHasher::new();
chunk.hash(&mut hasher);
hasher.finish()
}
let seq_arr: &SeqArray<Dna, 32, 1> = dna!("AGCGCTAGTCGTACTGCCGCATCGCTAGCGCT");
let seq: Seq<Dna> = seq_arr.into();
let seq_slice: &SeqSlice<Dna> = &seq;
let kmer: Kmer<Dna, 32> = seq_arr.into();
assert_eq!(hash(seq_arr), hash(&seq));
assert_eq!(hash(&seq), hash(&seq_slice));
assert_eq!(hash(&seq_slice), hash(&kmer));
}
#[test]
fn nth_chars() {
assert_eq!(iupac!("ACGTRYSWKMBDHVN-").nth(0), Iupac::A);
assert_ne!(iupac!("ACGTRYSWKMBDHVN-").nth(0), Iupac::C);
assert_eq!(iupac!("ACGTRYSWKMBDHVN-").nth(15), Iupac::X);
assert_eq!(iupac!("ACGTRYSWKMBDHVN-").nth(3), Iupac::from(Dna::T));
assert_ne!(iupac!("ACGTRYSWKMBDHVN-").nth(3), Iupac::from(Dna::G));
assert_eq!(
Seq::<Amino>::try_from("DCMNLKGHI").unwrap().nth(1),
Amino::C
);
assert_ne!(
Seq::<Amino>::try_from("DCMNLKGHI").unwrap().nth(7),
Amino::I
);
}
#[test]
fn colexicographic_order() {
for (i, e) in ["AA", "CA", "GA", "TA", "AC", "CC", "GC", "TC"]
.iter()
.enumerate()
{
assert_eq!(format!("{}", Kmer::<Dna, 2>::from(i)), format!("{}", e));
assert_eq!(Kmer::<Dna, 2>::from(i), *e);
}
}
}