bio_seq/codec/
dna.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
//! 2-bit DNA representation: `A: 00, C: 01, G: 10, T: 11`

use crate::codec::{Codec, Complement};

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(u8)]
pub enum Dna {
    A = 0b00,
    C = 0b01,
    G = 0b10,
    T = 0b11,
}

impl Codec for Dna {
    const BITS: u8 = 2;

    /// Transmute a `u8` into a nucleotide
    ///
    /// SAFETY: This only looks at the lower 2 bits of the `u8`
    fn unsafe_from_bits(b: u8) -> Self {
        debug_assert!(b < 4);
        unsafe { std::mem::transmute(b & 0b11) }
    }

    /// We can verify that a byte is a valid `Dna` value if it's
    /// between 0 and 3.
    fn try_from_bits(b: u8) -> Option<Self> {
        if b < 4 {
            Some(unsafe { std::mem::transmute::<u8, Dna>(b) })
        } else {
            None
        }
    }

    /// The ASCII values of 'A', 'C', 'G', and 'T' can be translated into
    /// the numbers 0, 1, 2, and 3 using bitwise operations: `((b << 1) + b) >> 3`.
    fn unsafe_from_ascii(b: u8) -> Self {
        Dna::unsafe_from_bits(((b << 1) + b) >> 3)
    }

    fn try_from_ascii(c: u8) -> Option<Self> {
        match c {
            b'A' => Some(Dna::A),
            b'C' => Some(Dna::C),
            b'G' => Some(Dna::G),
            b'T' => Some(Dna::T),
            _ => None,
        }
    }

    fn to_char(self) -> char {
        match self {
            Dna::A => 'A',
            Dna::C => 'C',
            Dna::G => 'G',
            Dna::T => 'T',
        }
    }

    fn to_bits(self) -> u8 {
        self as u8
    }

    fn items() -> impl Iterator<Item = Self> {
        vec![Dna::A, Dna::C, Dna::G, Dna::T].into_iter()
    }
}

impl Complement for Dna {
    /// This 2-bit representation of nucleotides lends itself to a very fast
    /// complement implementation with bitwise xor
    fn comp(&self) -> Self {
        // flip the bits
        let b = *self as u8 ^ 0b11;
        Dna::unsafe_from_bits(b)
    }
}

#[cfg(test)]
mod tests {
    use crate::prelude::*;

    #[test]
    fn dna_kmer_equality() {
        assert_eq!(
            Kmer::<Dna, 8>::try_from(dna!("TGCACATG")).unwrap(),
            Kmer::<Dna, 8>::try_from(dna!("TGCACATG")).unwrap()
        );
        assert_ne!(
            Kmer::<Dna, 7>::try_from(dna!("GTGACGA")).unwrap(),
            Kmer::<Dna, 7>::try_from(dna!("GTGAAGA")).unwrap()
        );
    }

    #[test]
    fn dna_kmer_macro() {
        assert_eq!(
            kmer!("TGCACATG"),
            Kmer::<Dna, 8>::try_from(dna!("TGCACATG")).unwrap()
        );
        assert_ne!(
            kmer!("GTGACGA"),
            Kmer::<Dna, 7>::try_from(dna!("GTGAAGA")).unwrap()
        );
    }

    /*
    #[test]
    fn dna_kmer_complement() {
        assert_eq!(
            format!(
                "{:b}",
                Kmer::<Dna, 8>::try_from(dna!("AAAAAAAA"))
                    .unwrap()
                    .comp()
                    .bs
            ),
            format!(
                "{:b}",
                Kmer::<Dna, 8>::try_from(dna!("TTTTTTTT")).unwrap().bs
            )
        );

        assert_eq!(
            Kmer::<Dna, 1>::try_from(dna!("C")).unwrap().comp(),
            Kmer::<Dna, 1>::try_from(dna!("G")).unwrap()
        );

        assert_eq!(
            Kmer::<Dna, 16>::from(dna!("AAAATGCACATGTTTT")).comp(),
            Kmer::<Dna, 16>::from(dna!("TTTTACGTGTACAAAA"))
        );
    }
    */
}