1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
use core::fmt;
macro_rules! impl_type {
(
$ty: ty, $for_ty: ty
) => {
impl From<$ty> for $for_ty {
fn from(val: $ty) -> Self {
val.0
}
}
impl From<$for_ty> for $ty {
fn from(val: $for_ty) -> Self {
Self::new(val)
}
}
impl std::ops::Deref for $ty {
type Target = $for_ty;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for $ty {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
};
}
/// Little Endian (LE) wrapper type
/// This type is used to indicate that the value is in little endian format
/// It's primary use is in deriving from `BinaryIo` trait
///
/// # Example
/// ```rust ignore
/// use binary_util::types::LE;
/// use binary_util::BinaryIo;
///
/// #[derive(BinaryIo)]
/// struct MyStruct {
/// test: LE<u32>,
/// }
/// ```
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct LE<T>(pub T);
impl<T> LE<T> {
pub fn new(val: T) -> Self {
Self(val)
}
}
impl_type!(LE<u16>, u16);
impl_type!(LE<u24>, u24);
impl_type!(LE<u32>, u32);
impl_type!(LE<u64>, u64);
impl_type!(LE<u128>, u128);
impl_type!(LE<i16>, i16);
impl_type!(LE<i24>, i24);
impl_type!(LE<i32>, i32);
impl_type!(LE<i64>, i64);
impl_type!(LE<i128>, i128);
impl_type!(LE<f32>, f32);
impl_type!(LE<f64>, f64);
/// Big Endian (BE) wrapper type
/// This type is used to indicate that the value is in big endian format
/// It's primary use is in deriving from `BinaryIo` trait
///
/// # Example
/// ```rust ignore
/// use binary_util::types::BE;
/// use binary_util::BinaryIo;
///
/// #[derive(BinaryIo)]
/// struct MyStruct {
/// test: BE<u32>,
/// }
/// ```
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct BE<T>(pub T);
impl<T> BE<T> {
pub fn new(val: T) -> Self {
Self(val)
}
}
impl_type!(BE<u16>, u16);
impl_type!(BE<u24>, u24);
impl_type!(BE<u32>, u32);
impl_type!(BE<u64>, u64);
impl_type!(BE<u128>, u128);
impl_type!(BE<i16>, i16);
impl_type!(BE<i24>, i24);
impl_type!(BE<i32>, i32);
impl_type!(BE<i64>, i64);
impl_type!(BE<i128>, i128);
impl_type!(BE<f32>, f32);
impl_type!(BE<f64>, f64);
/// Unsigned 24 bit integer explicit type.
/// You should really only use this when you need to derive the `BinaryIo` trait
/// as it is a helper type.
///
/// # Example
/// ```rust ignore
/// use binary_util::types::u24;
/// use binary_util::BinaryIo;
///
/// #[derive(BinaryIo)]
/// struct MyStruct {
/// test: u24,
/// }
/// ```
#[allow(non_camel_case_types)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct u24(pub u32);
impl u24 {
pub fn new(val: u32) -> Self {
if val <= 0xFFFFFF {
Self(val)
} else {
panic!("u24: value out of range")
}
}
}
impl fmt::Display for u24 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl_type!(u24, u32);
/// Signed 24 bit integer explicit type.
/// You should really only use this when you need to derive the `BinaryIo` trait
/// as it is a helper type.
///
/// # Example
/// ```rust ignore
/// use binary_util::types::i24;
/// use binary_util::BinaryIo;
///
/// #[derive(BinaryIo)]
/// struct MyStruct {
/// test: i24,
/// }
/// ```
#[allow(non_camel_case_types)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct i24(pub i32);
impl i24 {
pub fn new(val: i32) -> Self {
if val >= -0x800000 && val <= 0x7FFFFF {
Self(val)
} else {
panic!("i24: value out of range")
}
}
}
impl fmt::Display for i24 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl_type!(i24, i32);
/// A variable length integer type that can be up to 32 bits.
/// This is a helper type for deriving the `BinaryIo` trait.
///
/// You should not use this type directly, if you are reading or writing
/// a variable length integer, use the `ByteWriter` or `ByteReader` and use
/// the corresponding `read_var_u32` or `write_var_u32` methods.
#[allow(non_camel_case_types)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct varu32(pub u32);
impl varu32 {
pub fn new(val: u32) -> Self {
Self(val)
}
}
impl_type!(varu32, u32);
/// A variable length integer type that can be up to 32 bits.
/// This is a helper type for deriving the `BinaryIo` trait.
///
/// You should not use this type directly, if you are reading or writing
/// a variable length integer, use the `ByteWriter` or `ByteReader` and use
/// the corresponding `read_var_i32` or `write_var_i32` methods.
#[allow(non_camel_case_types)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct vari32(pub i32);
impl vari32 {
pub fn new(val: i32) -> Self {
Self(val)
}
}
impl_type!(vari32, i32);
/// A variable length integer type that can be up to 64 bits.
/// This is a helper type for deriving the `BinaryIo` trait.
///
/// > You should not use this type directly, if you are reading or writing
/// > a variable length integer, use the `ByteWriter` or `ByteReader` and use
/// > the corresponding `read_var_u64` or `write_var_u64` methods.
#[allow(non_camel_case_types)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct varu64(pub u64);
impl varu64 {
pub fn new(val: u64) -> Self {
Self(val)
}
}
impl_type!(varu64, u64);
/// A variable length integer type that can be up to 64 bits.
/// This is a helper type for deriving the `BinaryIo` trait.
///
/// > You should not use this type directly, if you are reading or writing
/// > a variable length integer, use the `ByteWriter` or `ByteReader` and use
/// > the corresponding `read_var_i64` or `write_var_i64` methods.
#[allow(non_camel_case_types)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct vari64(pub i64);
impl vari64 {
pub fn new(val: i64) -> Self {
Self(val)
}
}
impl_type!(vari64, i64);