1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
use bytes::{Buf, BufMut, Bytes, BytesMut};
use std::{
collections::VecDeque,
io::{Error, IoSlice},
};
use crate::interfaces::{Reader, Writer};
pub const ERR_EOB: &str = "No more bytes left to be read in buffer";
pub const ERR_EOM: &str = "Buffer is full, cannot write more bytes";
pub const ERR_VARINT_TOO_LONG: &str = "Varint is too long to be written to buffer";
macro_rules! can_read {
($self: ident, $size: expr) => {
$self.buf.remaining() >= $size
};
}
macro_rules! can_write {
($self: ident, $size: expr) => {
$self.buf.remaining_mut() >= $size
};
}
macro_rules! read_fn {
($name: ident, $typ: ident, $fn_name: ident, $byte_size: literal) => {
#[inline]
pub fn $name(&mut self) -> Result<$typ, std::io::Error> {
if can_read!(self, $byte_size) {
return Ok(self.buf.$fn_name());
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
};
}
macro_rules! write_fn {
($name: ident, $typ: ident, $fn_name: ident, $byte_size: literal) => {
#[inline]
pub fn $name(&mut self, num: $typ) -> Result<(), std::io::Error> {
if can_write!(self, $byte_size) {
self.buf.$fn_name(num);
return Ok(());
} else {
return Err(Error::new(std::io::ErrorKind::OutOfMemory, ERR_EOM));
}
}
};
}
/// ByteReader is a panic-free way to read bytes from the `byte::Buf` trait.
///
/// ## Example
/// ```rust
/// use binary_util::io::ByteReader;
///
/// fn main() {
/// let mut buf = ByteReader::from(&[0, 253, 255, 255, 255, 15][..]);
/// assert_eq!(buf.read_u8().unwrap(), 0);
/// assert_eq!(buf.read_var_i32().unwrap(), -2147483647);
/// }
/// ```
///
/// ## Peek Ahead
/// `ByteReader` also provides a utility `peek_ahead` function that allows you to
/// "peek ahead" at the next byte in the stream without advancing the stream.
///
/// Do not confuse this with any sort of "peek" function. This function does not
/// increment the read position of the stream, but rather copies the byte at the
/// specified position.
/// ```rust
/// use binary_util::io::ByteReader;
///
/// fn main() {
/// let mut buf = ByteReader::from(&[253, 255, 14, 255, 255, 15][..]);
/// if buf.peek_ahead(3).unwrap() != 255 {
/// // buffer is corrupted!
/// } else {
/// // read the varint
/// let num = buf.read_var_i32().unwrap();
/// }
/// }
/// ```
///
/// ## Reading a struct without `BinaryDecoder`
/// This is useful if you are trying to read a struct or optional type and validate the type before
/// reading the rest of the struct.
/// ```rust
/// use binary_util::io::ByteReader;
///
/// struct PingPacket {
/// pub id: u8,
/// pub time: u64,
/// pub ack_id: Option<i32>
/// }
///
/// fn main() {
/// let mut buf = ByteReader::from(&[0, 253, 255, 255, 255, 255, 255, 255, 255, 0][..]);
///
/// // Read the id
/// let id = buf.read_u8().unwrap();
///
/// if id == 0 {
/// // Read the time
/// let time = buf.read_u64().unwrap();
/// // read ack
/// if buf.read_bool().unwrap() {
/// let ack_id = buf.read_var_i32().unwrap();
/// let packet = PingPacket { id, time, ack_id: Some(ack_id) };
/// } else {
/// let packet = PingPacket { id, time, ack_id: None };
/// }
/// }
/// }
/// ```
#[derive(Debug, Clone)]
pub struct ByteReader {
pub(crate) buf: Bytes,
}
impl From<ByteWriter> for ByteReader {
fn from(writer: ByteWriter) -> Self {
Self {
buf: writer.buf.freeze(),
}
}
}
impl Into<Bytes> for ByteReader {
fn into(self) -> Bytes {
self.buf
}
}
impl Into<Vec<u8>> for ByteReader {
fn into(self) -> Vec<u8> {
self.buf.to_vec()
}
}
impl Into<VecDeque<u8>> for ByteReader {
fn into(self) -> VecDeque<u8> {
self.buf.to_vec().into()
}
}
impl From<Bytes> for ByteReader {
fn from(buf: Bytes) -> Self {
Self { buf }
}
}
impl From<Vec<u8>> for ByteReader {
fn from(buf: Vec<u8>) -> Self {
Self { buf: buf.into() }
}
}
impl From<&[u8]> for ByteReader {
fn from(buf: &[u8]) -> Self {
Self {
buf: Bytes::from(buf.to_vec()),
}
}
}
impl ByteReader {
/// `ByteReader` also provides a utility `peek_ahead` function that allows you to
/// "peek ahead" at the next byte in the stream without advancing the stream.
///
/// Do not confuse this with any sort of "peek" function. This function does not
/// increment the read position of the stream, but rather copies the byte at the
/// specified position.
/// ```rust
/// use binary_util::io::ByteReader;
///
/// fn main() {
/// let mut buf = ByteReader::from(&[253, 255, 14, 255, 255, 15][..]);
/// if buf.peek_ahead(3).unwrap() != 255 {
/// // buffer is corrupted, varints can never have a leading byte less than 255 if
/// // Their are bytes remaining!
/// } else {
/// // read the varint
/// let num = buf.read_var_i32().unwrap();
/// }
/// }
/// ```
pub fn peek_ahead(&mut self, pos: usize) -> Result<u8, std::io::Error> {
if can_read!(self, pos) {
return Ok(self.buf.chunk()[pos]);
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
read_fn!(read_u8, u8, get_u8, 1);
read_fn!(read_i8, i8, get_i8, 1);
read_fn!(read_u16, u16, get_u16, 2);
read_fn!(read_u16_le, u16, get_u16_le, 2);
read_fn!(read_i16, i16, get_i16, 2);
read_fn!(read_i16_le, i16, get_i16_le, 2);
/// Reads a 3-byte unsigned integer from the stream.
pub fn read_u24(&mut self) -> Result<u32, std::io::Error> {
if can_read!(self, 3) {
if let Ok(num) = self.read_uint(3) {
return Ok(num as u32);
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
/// Reads a 3-byte unsigned integer from the stream in little endian.
/// This is the same as `read_u24` but in little endian.
pub fn read_u24_le(&mut self) -> Result<u32, std::io::Error> {
if can_read!(self, 3) {
if let Ok(num) = self.read_uint_le(3) {
return Ok(num as u32);
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
pub fn read_i24(&mut self) -> Result<i32, std::io::Error> {
if can_read!(self, 3) {
if let Ok(num) = self.read_int(3) {
return Ok(num as i32);
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
read_fn!(read_u32, u32, get_u32, 4);
read_fn!(read_u32_le, u32, get_u32_le, 4);
read_fn!(read_f32, f32, get_f32, 4);
read_fn!(read_f32_le, f32, get_f32_le, 4);
/// Reads a var-int 32-bit unsigned integer from the stream.
/// This is a variable length integer that can be 1, 2, 3, or 4 bytes long.
///
/// This function is recoverable, meaning that if the stream ends before the
/// var-int is fully read, it will return an error, and will not consume the
/// bytes that were read.
#[inline]
pub fn read_var_u32(&mut self) -> Result<u32, std::io::Error> {
let mut num = 0u32;
let mut interval = 0_usize;
for i in (0..35).step_by(7) {
let byte = self.peek_ahead(interval)?;
num |= ((byte & 0x7F) as u32) << i;
interval += 1;
if byte & 0x80 == 0 {
self.buf.advance(interval);
return Ok(num);
}
}
return Err(Error::new(
std::io::ErrorKind::Other,
"Varint overflow's 32-bit integer",
));
}
read_fn!(read_i32, i32, get_i32, 4);
read_fn!(read_i32_le, i32, get_i32_le, 4);
/// Reads a var-int 32-bit signed integer from the stream.
/// This method is the same as `read_var_u32` but it will return a signed integer.
pub fn read_var_i32(&mut self) -> Result<i32, std::io::Error> {
let num = self.read_var_u32()?;
Ok((num >> 1) as i32 ^ -((num & 1) as i32))
}
read_fn!(read_u64, u64, get_u64, 8);
read_fn!(read_u64_le, u64, get_u64_le, 8);
read_fn!(read_i64, i64, get_i64, 8);
read_fn!(read_i64_le, i64, get_i64_le, 8);
read_fn!(read_f64, f64, get_f64, 8);
read_fn!(read_f64_le, f64, get_f64_le, 8);
/// Reads a var-int 64-bit unsigned integer from the stream.
/// This is a variable length integer that can be 1, 2, 3, 4, 5, 6, 7, or 8 bytes long.
#[inline]
pub fn read_var_u64(&mut self) -> Result<u64, std::io::Error> {
let mut num = 0u64;
let mut interval = 0_usize;
for i in (0..70).step_by(7) {
let byte = self.peek_ahead(interval)?;
num |= ((byte & 0x7F) as u64) << i;
interval += 1;
if byte & 0x80 == 0 {
self.buf.advance(interval);
return Ok(num);
}
}
return Err(Error::new(
std::io::ErrorKind::Other,
"Varint overflow's 64-bit integer",
));
}
/// Reads a var-int 64-bit signed integer from the stream.
/// This method is the same as `read_var_u64` but it will return a signed integer.
///
/// For more information on how this works, see `read_var_i32`.
#[inline]
pub fn read_var_i64(&mut self) -> Result<i64, std::io::Error> {
let num = self.read_var_u64()?;
Ok((num >> 1) as i64 ^ -((num & 1) as i64))
}
read_fn!(read_u128, u128, get_u128, 16);
read_fn!(read_u128_le, u128, get_u128_le, 16);
read_fn!(read_i128, i128, get_i128, 16);
read_fn!(read_i128_le, i128, get_i128_le, 16);
/// Reads an unsigned integer from the stream with a varying size
/// indicated by the `size` parameter.
pub fn read_uint(&mut self, size: usize) -> Result<u64, std::io::Error> {
// todo: Check whether we should use `copy_nonoverlapping` or `self.get_uint`
if can_read!(self, size) {
let mut num = 0u64;
let ptr_to = &mut num as *mut u64 as *mut u8;
// we're not using for loops because they're slower
unsafe {
core::ptr::copy_nonoverlapping(self.buf.chunk().as_ptr(), ptr_to, size);
}
// increment the position
self.buf.advance(size);
return Ok(num.to_be());
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
/// Reads an unsigned integer from the stream with a varying size in little endian
/// indicated by the `size` parameter.
pub fn read_uint_le(&mut self, size: usize) -> Result<u64, std::io::Error> {
if can_read!(self, size) {
let mut num = 0u64;
let ptr_to = &mut num as *mut u64 as *mut u8;
unsafe {
core::ptr::copy_nonoverlapping(self.buf.chunk().as_ptr(), ptr_to, size);
}
// increment the position
self.buf.advance(size);
return Ok(num.to_le());
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
pub fn read_int(&mut self, size: usize) -> Result<i64, std::io::Error> {
if can_read!(self, size) {
return Ok(self.buf.get_int(size));
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
pub fn read_int_le(&mut self, size: usize) -> Result<i64, std::io::Error> {
if can_read!(self, size) {
return Ok(self.buf.get_int_le(size));
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
pub fn read_char(&mut self) -> Result<char, std::io::Error> {
let c = self.read_u32()?;
if let Some(c) = char::from_u32(c) {
return Ok(c);
} else {
return Err(Error::new(std::io::ErrorKind::InvalidData, "Invalid char"));
}
}
pub fn read_bool(&mut self) -> Result<bool, std::io::Error> {
if can_read!(self, 1) {
return Ok(self.buf.get_u8() != 0);
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
/// Reads a string from the stream.
/// This is a reversable operation, meaning if it fails,
/// the stream will be in the same state as before.
pub fn read_string(&mut self) -> Result<String, std::io::Error> {
// todo: Make this reversable
let len = self.read_var_u64()?;
if can_read!(self, len as usize) {
let mut string = String::with_capacity(len as usize);
unsafe {
let v = string.as_mut_vec();
v.set_len(len as usize);
self.buf.copy_to_slice(&mut v[..]);
}
return Ok(string);
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
/// Reads an `Option` of `T` from the stream.
/// `T` must implement the `Reader` trait and be sized.
///
/// This operation is not recoverable and will corrupt the stream if it fails.
/// If this behavior is desired, you should use `peek_ahead` when implementing
/// the `Reader` trait.
///
/// # Example
/// ```rust
/// use binary_util::io::ByteReader;
/// use binary_util::interfaces::Reader;
///
/// pub struct HelloWorld {
/// pub magic: u32
/// }
///
/// impl Reader<HelloWorld> for HelloWorld {
/// fn read(reader: &mut ByteReader) -> Result<HelloWorld, std::io::Error> {
/// Ok(HelloWorld {
/// magic: reader.read_u32()?
/// })
/// }
/// }
///
/// fn main() {
/// // Nothing is here!
/// let mut reader = ByteReader::from(&[0x00][..]);
/// let hello_world = reader.read_option::<HelloWorld>().unwrap();
/// assert_eq!(hello_world.is_some(), false);
/// }
/// ```
pub fn read_option<T: Reader<T>>(&mut self) -> Result<Option<T>, std::io::Error> {
if self.read_bool()? {
return Ok(Some(T::read(self)?));
} else {
return Ok(None);
}
}
/// Reads a varu32 sized slice from the stream.
/// For reading a slice of raw bytes, use `read` instead.
pub fn read_sized_slice(&mut self) -> Result<Bytes, std::io::Error> {
let len = self.read_var_u32()?;
if can_read!(self, len as usize) {
let b = self.buf.slice(..len as usize);
self.buf.advance(len as usize);
return Ok(b);
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
/// Reads a slice from the stream into the slice passed by the caller.
/// For reading a prefixed sized slice, use `read_sized_slice` instead.
pub fn read(&mut self, buffer: &mut [u8]) -> Result<(), std::io::Error> {
if can_read!(self, buffer.len()) {
self.buf.copy_to_slice(buffer);
return Ok(());
} else {
return Err(Error::new(std::io::ErrorKind::UnexpectedEof, ERR_EOB));
}
}
/// Reads `T` from the stream.
/// `T` must implement the `Reader` trait and be sized.
pub fn read_struct<T: Reader<T>>(&mut self) -> Result<T, std::io::Error> {
return T::read(self);
}
/// Returns the remaining bytes in the stream.
pub fn as_slice(&self) -> &[u8] {
self.buf.chunk()
}
}
/// ByteWriter is a panic-free way to write bytes to a `BufMut` trait.
///
/// ## Example
/// A generic example of how to use the `ByteWriter` struct.
/// ```rust
/// use binary_util::io::ByteWriter;
/// use binary_util::io::ByteReader;
///
/// fn main() {
/// let mut writer = ByteWriter::new();
/// writer.write_string("Hello World!").unwrap();
/// writer.write_var_u32(65536).unwrap();
/// writer.write_u8(0).unwrap();
///
/// println!("Bytes: {:?}", writer.as_slice());
/// }
/// ```
///
/// `ByteWriter` also implements the `Into` trait to convert the `ByteWriter` into a `BytesMut` or `Bytes` structs.
/// ```rust
/// use binary_util::io::ByteWriter;
/// use binary_util::io::ByteReader;
///
/// fn main() {
/// let mut writer = ByteWriter::new();
/// writer.write_u8(1);
/// writer.write_u8(2);
/// writer.write_u8(3);
///
/// let mut reader: ByteReader = writer.into();
/// assert_eq!(reader.read_u8().unwrap(), 1);
/// assert_eq!(reader.read_u8().unwrap(), 2);
/// assert_eq!(reader.read_u8().unwrap(), 3);
/// }
/// ```
///
/// #### ByteWriter Implementation Notice
/// While most of the methods are reversable, some are not.
/// Meaning there is a chance that if you call a method in a edge case, it will corrupt the stream.
///
/// For example, `write_var_u32` is not reversable because we currently do not
/// allocate a buffer to store the bytes before writing them to the buffer.
/// While you should never encounter this issue, it is possible when you run out of memory.
/// This issue is marked as a todo, but is low priority.
#[derive(Debug, Clone)]
pub struct ByteWriter {
pub(crate) buf: BytesMut,
}
impl Into<BytesMut> for ByteWriter {
fn into(self) -> BytesMut {
self.buf
}
}
impl Into<Bytes> for ByteWriter {
fn into(self) -> Bytes {
self.buf.freeze()
}
}
impl Into<Vec<u8>> for ByteWriter {
fn into(self) -> Vec<u8> {
self.buf.to_vec()
}
}
impl Into<VecDeque<u8>> for ByteWriter {
fn into(self) -> VecDeque<u8> {
self.buf.to_vec().into()
}
}
impl From<IoSlice<'_>> for ByteWriter {
fn from(slice: IoSlice) -> Self {
let mut buf = BytesMut::with_capacity(slice.len());
buf.put_slice(&slice);
return Self { buf };
}
}
impl From<&[u8]> for ByteWriter {
fn from(slice: &[u8]) -> Self {
let mut buf = BytesMut::with_capacity(slice.len());
buf.put_slice(slice);
return Self { buf };
}
}
impl From<ByteReader> for ByteWriter {
fn from(reader: ByteReader) -> Self {
Self {
buf: reader.buf.chunk().into(),
}
}
}
impl ByteWriter {
pub fn new() -> Self {
return Self {
buf: BytesMut::new(),
};
}
write_fn!(write_u8, u8, put_u8, 1);
write_fn!(write_i8, i8, put_i8, 1);
write_fn!(write_u16, u16, put_u16, 2);
write_fn!(write_u16_le, u16, put_u16_le, 2);
write_fn!(write_i16, i16, put_i16, 2);
write_fn!(write_i16_le, i16, put_i16_le, 2);
pub fn write_u24(&mut self, num: u32) -> Result<(), std::io::Error> {
return self.write_uint(num.into(), 3);
}
pub fn write_u24_le(&mut self, num: u32) -> Result<(), std::io::Error> {
return self.write_uint_le(num.into(), 3);
}
pub fn write_i24(&mut self, num: i32) -> Result<(), std::io::Error> {
return self.write_int(num.into(), 3);
}
pub fn write_i24_le(&mut self, num: i32) -> Result<(), std::io::Error> {
return self.write_int_le(num.into(), 3);
}
write_fn!(write_u32, u32, put_u32, 4);
write_fn!(write_u32_le, u32, put_u32_le, 4);
write_fn!(write_i32, i32, put_i32, 4);
write_fn!(write_i32_le, i32, put_i32_le, 4);
write_fn!(write_f32, f32, put_f32, 4);
write_fn!(write_f32_le, f32, put_f32_le, 4);
// todo: write_var_u32, write_var_i32 should be reversable and should not corrupt the stream on failure
pub fn write_var_u32(&mut self, num: u32) -> Result<(), std::io::Error> {
let mut x = num;
while x >= 0x80 {
self.write_u8((x as u8) | 0x80)?;
x >>= 7;
}
self.write_u8(x as u8)?;
return Ok(());
}
pub fn write_var_i32(&mut self, num: i32) -> Result<(), std::io::Error> {
return if num < 0 {
let num = num as u32;
self.write_var_u32(!(num << 1))
} else {
let num = num as u32;
self.write_var_u32(num << 1)
};
}
write_fn!(write_u64, u64, put_u64, 8);
write_fn!(write_u64_le, u64, put_u64_le, 8);
write_fn!(write_i64, i64, put_i64, 8);
write_fn!(write_i64_le, i64, put_i64_le, 8);
write_fn!(write_f64, f64, put_f64, 8);
write_fn!(write_f64_le, f64, put_f64_le, 8);
pub fn write_var_u64(&mut self, num: u64) -> Result<(), std::io::Error> {
let mut x = (num as u64) & u64::MAX;
for _ in (0..70).step_by(7) {
if x >> 7 == 0 {
self.write_u8(x as u8)?;
return Ok(());
} else {
self.write_u8(((x & 0x7F) | 0x80) as u8)?;
x >>= 7;
}
}
return Err(Error::new(
std::io::ErrorKind::InvalidData,
ERR_VARINT_TOO_LONG,
));
}
pub fn write_var_i64(&mut self, num: i64) -> Result<(), std::io::Error> {
return if num < 0 {
let num = num as u64;
self.write_var_u64(!(num << 1))
} else {
let num = num as u64;
self.write_var_u64(num << 1)
};
}
write_fn!(write_u128, u128, put_u128, 16);
write_fn!(write_u128_le, u128, put_u128_le, 16);
write_fn!(write_i128, i128, put_i128, 16);
write_fn!(write_i128_le, i128, put_i128_le, 16);
pub fn write_uint(&mut self, num: u64, size: usize) -> Result<(), std::io::Error> {
if can_write!(self, size) {
self.buf.put_uint(num, size);
return Ok(());
} else {
return Err(Error::new(std::io::ErrorKind::OutOfMemory, ERR_EOM));
}
}
pub fn write_uint_le(&mut self, num: u64, size: usize) -> Result<(), std::io::Error> {
if can_write!(self, size) {
self.buf.put_uint_le(num, size);
return Ok(());
} else {
return Err(Error::new(std::io::ErrorKind::OutOfMemory, ERR_EOM));
}
}
pub fn write_int(&mut self, num: i64, size: usize) -> Result<(), std::io::Error> {
if can_write!(self, size) {
self.buf.put_int(num, size);
return Ok(());
} else {
return Err(Error::new(std::io::ErrorKind::OutOfMemory, ERR_EOM));
}
}
pub fn write_int_le(&mut self, num: i64, size: usize) -> Result<(), std::io::Error> {
if can_write!(self, size) {
self.buf.put_int_le(num, size);
return Ok(());
} else {
return Err(Error::new(std::io::ErrorKind::OutOfMemory, ERR_EOM));
}
}
pub fn write_char(&mut self, c: char) -> Result<(), std::io::Error> {
self.write_u32(c as u32)
}
pub fn write_bool(&mut self, b: bool) -> Result<(), std::io::Error> {
if can_write!(self, 1) {
self.buf.put_u8(b as u8);
return Ok(());
} else {
return Err(Error::new(std::io::ErrorKind::OutOfMemory, ERR_EOM));
}
}
/// Write a string to the buffer
/// The string is written as a var_u32 length followed by the bytes of the string.
/// Uses <https://protobuf.dev/programming-guides/encoding/#length-types> for length encoding
pub fn write_string(&mut self, string: &str) -> Result<(), std::io::Error> {
// https://protobuf.dev/programming-guides/encoding/#length-types
if can_write!(self, string.len()) {
self.write_var_u32(string.len() as u32)?;
self.buf.put_slice(string.as_bytes());
return Ok(());
} else {
return Err(Error::new(std::io::ErrorKind::OutOfMemory, ERR_EOM));
}
}
/// Writes an `Option` to the buffer. The option must implement the `Writer` trait.
///
/// ## Example
/// ```rust
/// use binary_util::io::ByteWriter;
/// use binary_util::interfaces::Writer;
///
/// pub struct HelloWorld {
/// pub magic: u32
/// }
///
/// impl Writer for HelloWorld {
/// fn write(&self, buf: &mut ByteWriter) -> Result<(), std::io::Error> {
/// buf.write_u32(self.magic)?;
/// return Ok(());
/// }
/// }
///
/// fn main() {
/// let hello = HelloWorld { magic: 0xCAFEBABE };
/// let mut buf = hello.write_to_bytes().unwrap();
///
/// println!("Hello World: {:?}", buf);
/// }
/// ```
pub fn write_option(&mut self, option: &Option<impl Writer>) -> Result<(), std::io::Error> {
if let Some(option) = option {
self.write_bool(true)?;
option.write(self)?;
} else {
self.write_bool(false)?;
}
return Ok(());
}
/// Writes a size-prefixed slice of bytes to the buffer. The slice is prefixed with a var_u32 length.
pub fn write_slice(&mut self, slice: &[u8]) -> Result<(), std::io::Error> {
if can_write!(self, slice.len()) {
self.write_var_u32(slice.len() as u32)?;
self.buf.put_slice(slice);
return Ok(());
} else {
return Err(Error::new(std::io::ErrorKind::OutOfMemory, ERR_EOM));
}
}
/// Writes a slice of bytes to the buffer
/// This is not the same as a size-prefixed slice, this is just a raw slice of bytes.
///
/// For automatically size-prefixed slices, use `write_slice`.
pub fn write(&mut self, buf: &[u8]) -> Result<(), std::io::Error> {
if can_write!(self, buf.len()) {
self.buf.put_slice(buf);
return Ok(());
} else {
return Err(Error::new(std::io::ErrorKind::OutOfMemory, ERR_EOM));
}
}
/// Writes `T` to the buffer. `T` must implement the `Writer` trait.
/// This is the same as calling `T.write(self)`.
/// ```rust
/// use binary_util::interfaces::{Reader, Writer};
/// use binary_util::io::{ByteReader, ByteWriter};
///
/// pub struct HelloPacket {
/// pub name: String,
/// pub age: u8,
/// pub is_cool: bool,
/// pub friends: Vec<String>,
/// }
///
/// impl Reader<HelloPacket> for HelloPacket {
/// fn read(buf: &mut ByteReader) -> std::io::Result<Self> {
/// Ok(Self {
/// name: buf.read_string()?,
/// age: buf.read_u8()?,
/// is_cool: buf.read_bool()?,
/// friends: Vec::<String>::read(buf)?
/// })
/// }
/// }
///
/// impl Writer for HelloPacket {
/// fn write(&self, buf: &mut ByteWriter) -> std::io::Result<()> {
/// buf.write_string(&self.name);
/// buf.write_u8(self.age);
/// buf.write_bool(self.is_cool);
/// self.friends.write(buf)?;
/// Ok(())
/// }
/// }
///
/// fn main() {
/// let mut buf = ByteWriter::new();
/// let packet = HelloPacket {
/// name: "John".to_string(),
/// age: 18,
/// is_cool: true,
/// friends: vec!["Bob".to_string(), "Joe".to_string()]
/// };
/// buf.write_type(&packet).unwrap();
/// }
/// ```
pub fn write_type<T: Writer>(&mut self, t: &T) -> Result<(), std::io::Error> {
t.write(self)
}
pub fn as_slice(&self) -> &[u8] {
self.buf.chunk()
}
pub fn clear(&mut self) {
self.buf.clear();
}
}