1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
use std::net::{Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6};
use crate::io::{ByteReader, ByteWriter};
pub type LE<T> = std::num::Wrapping<T>;
macro_rules! impl_reader {
($($t:ty, $method: tt),*) => {
$(
impl Reader<$t> for $t {
fn read(buf: &mut ByteReader) -> Result<$t, std::io::Error> {
buf.$method()
}
}
)*
};
}
macro_rules! impl_writer {
($($t:ty, $method: tt),*) => {
$(
impl Writer for $t {
fn write(&self, buf: &mut ByteWriter) -> Result<(), std::io::Error> {
buf.$method(*self)
}
}
)*
};
}
macro_rules! impl_streamable {
($($t:ty),*) => {
$(
impl Streamable<$t> for $t {}
)*
};
}
/// Allows you to read from a `ByteReader` without needing to know the type.
///
/// ```ignore
/// use binary_util::io::{ByteReader, Reader};
///
/// pub struct MyStruct {
/// pub a: u8,
/// pub b: u8
/// }
///
/// impl Reader for MyStruct {
/// fn read(&self, buf: &mut ByteReader) -> Result<Self, std::io::Error> {
/// let a = buf.read_u8()?;
/// let b = buf.read_u8()?;
/// Ok(Self { a, b })
/// }
/// }
/// ```
pub trait Reader<Output> {
/// Reads `Self` from a `ByteReader`.
///
/// For automatic implementations, use the `#[derive(BinaryIo)]` macro.
fn read(buf: &mut ByteReader) -> Result<Output, std::io::Error>;
}
// default implementations on primitive types.
impl_reader!(
u8,
read_u8,
i8,
read_i8,
u16,
read_u16,
i16,
read_i16,
u32,
read_u32,
i32,
read_i32,
u64,
read_u64,
i64,
read_i64,
u128,
read_u128,
i128,
read_i128,
f32,
read_f32,
f64,
read_f64,
bool,
read_bool,
char,
read_char,
String,
read_string
);
// little endian implementations on primitive types.
// impl_reader!(
// LE<u16>, read_u16_le,
// LE<u32>, read_u32_le,
// LE<u64>, read_u64_le,
// LE<u128>, read_u128_le,
// LE<i16>, read_i16_le,
// LE<i32>, read_i32_le,
// LE<i64>, read_i64_le,
// LE<i128>, read_i128_le,
// LE<f32>, read_f32_le,
// LE<f64>, read_f64_le
// );
impl<T> Reader<Vec<T>> for Vec<T>
where
T: Reader<T> + Sized,
{
fn read(buf: &mut ByteReader) -> Result<Vec<T>, std::io::Error> {
let len = buf.read_var_u32()?;
let mut vec = Vec::with_capacity(len as usize);
for _ in 0..len {
vec.push(T::read(buf)?);
}
Ok(vec)
}
}
impl<T> Reader<Option<T>> for Option<T>
where
T: Reader<T> + Sized,
{
fn read(buf: &mut ByteReader) -> Result<Option<T>, std::io::Error> {
let is_some = buf.read_bool()?;
if is_some {
Ok(Some(T::read(buf)?))
} else {
Ok(None)
}
}
}
impl Reader<SocketAddr> for SocketAddr {
fn read(buf: &mut ByteReader) -> Result<SocketAddr, std::io::Error> {
match buf.read_u8()? {
4 => {
let parts = (
buf.read_u8()?,
buf.read_u8()?,
buf.read_u8()?,
buf.read_u8()?,
);
let port = buf.read_u16()?;
Ok(SocketAddr::V4(SocketAddrV4::new(
Ipv4Addr::new(parts.0, parts.1, parts.2, parts.3),
port,
)))
}
6 => {
let _family = buf.read_u16()?;
let port = buf.read_u16()?;
let flow = buf.read_u32()?;
let parts = (
buf.read_u16()?,
buf.read_u16()?,
buf.read_u16()?,
buf.read_u16()?,
buf.read_u16()?,
buf.read_u16()?,
buf.read_u16()?,
buf.read_u16()?,
);
let address = Ipv6Addr::new(
parts.0, parts.1, parts.2, parts.3, parts.4, parts.5, parts.6, parts.7,
);
let scope = buf.read_u32()?;
Ok(SocketAddr::V6(SocketAddrV6::new(
address, port, flow, scope,
)))
}
_ => Err(std::io::Error::new(
std::io::ErrorKind::InvalidData,
"Invalid IP version",
)),
}
}
}
/// Allows you to write to a `ByteWriter` without needing to know the type.
///
/// ```ignore
/// use binary_util::io::{ByteWriter, Writer};
///
/// pub struct MyStruct {
/// pub a: u8,
/// pub b: u8
/// }
///
/// impl Writer for MyStruct {
/// fn write(&self, buf: &mut ByteWriter) -> Result<(), std::io::Error> {
/// buf.write_u8(self.a)?;
/// buf.write_u8(self.b)?;
/// Ok(());
/// }
/// }
/// ```
pub trait Writer {
/// Writes `Self` to a `ByteWriter`.
///
/// For automatic implementations, use `#[derive(BinaryEncoder]` macro.
fn write(&self, buf: &mut ByteWriter) -> Result<(), std::io::Error>;
/// This is a utility function to write `Self` to a `ByteWriter` without
/// needing to create a `ByteWriter` first.
fn write_to_bytes(&self) -> Result<ByteWriter, std::io::Error> {
let mut buf = ByteWriter::new();
self.write(&mut buf)?;
Ok(buf)
}
}
// default implementations on primitive types.
impl_writer!(
u8,
write_u8,
i8,
write_i8,
u16,
write_u16,
i16,
write_i16,
u32,
write_u32,
i32,
write_i32,
u64,
write_u64,
i64,
write_i64,
u128,
write_u128,
i128,
write_i128,
f32,
write_f32,
f64,
write_f64,
bool,
write_bool,
&str,
write_string
);
impl Writer for String {
fn write(&self, buf: &mut ByteWriter) -> Result<(), std::io::Error> {
buf.write_string(self)
}
}
impl Writer for char {
fn write(&self, buf: &mut ByteWriter) -> Result<(), std::io::Error> {
buf.write_char(*self)
}
}
impl<T> Writer for Vec<T>
where
T: Writer + Sized,
{
fn write(&self, buf: &mut ByteWriter) -> Result<(), std::io::Error> {
buf.write_var_u32(self.len() as u32)?;
for item in self {
item.write(buf)?;
}
Ok(())
}
}
impl<T> Writer for Option<T>
where
T: Writer + Sized,
{
fn write(&self, buf: &mut ByteWriter) -> Result<(), std::io::Error> {
match self {
Some(item) => {
buf.write_bool(true)?;
item.write(buf)?;
}
None => {
buf.write_bool(false)?;
}
}
Ok(())
}
}
impl Writer for SocketAddr {
fn write(&self, buf: &mut ByteWriter) -> Result<(), std::io::Error> {
match self {
SocketAddr::V4(addr) => {
buf.write_u8(4)?;
buf.write(&addr.ip().octets())?;
buf.write_u16(addr.port())?;
}
SocketAddr::V6(addr) => {
buf.write_u8(6)?;
// family (unused by rust)
buf.write_u16(0)?;
// port
buf.write_u16(addr.port())?;
// flow
buf.write_u32(addr.flowinfo())?;
// address eg: 0:0:0:0:0:ffff:7f00:1
buf.write(&addr.ip().octets())?;
// scope
buf.write_u32(addr.scope_id())?;
}
}
Ok(())
}
}
/// ## Deprecated
/// __**This trait exists only for backwards compatibility.**__
///
/// If you wish to read and write from a `ByteReader` or `ByteWriter`,
/// use the `Reader` and `Writer` traits.
///
/// ### New Implementation Example
/// ```ignore
/// use binary_util::io::{ByteReader, ByteWriter};
/// use binary_util::interfaces::{Reader, Writer};
///
/// pub struct MyStruct;
///
/// impl Reader for MyStruct;
/// impl Writer for MyStruct;
/// ```
///
/// ## `Streamable`
/// A trait to parse and unparse header structs from a given buffer.
///
/// ```ignore
/// use binary_util::{Streamable, error::BinaryError};
///
/// struct Foo {
/// bar: u8,
/// foo_bar: u16
/// }
/// impl Streamable for Foo {
/// fn parse(&self) -> Result<Vec<u8>, BinaryError> {
/// use std::io::Write;
/// let mut stream = Vec::<u8>::new();
/// stream.write_all(&self.bar.parse()?[..])?;
/// stream.write_all(&self.bar.parse()?[..])?;
/// Ok(stream)
/// }
///
/// fn compose(source: &[u8], position: &mut usize) -> Result<Self, BinaryError> {
/// // Streamable is implemented for all primitives, so we can
/// // just use this implementation to read our properties.
/// Ok(Self {
/// bar: u8::compose(&source, position)?,
/// foo_bar: u16::compose(&source, position)?
/// })
/// }
/// }
/// ```
pub trait Streamable<T>: Reader<T> + Writer {
/// Writes `self` to the given buffer.
fn parse(&self) -> Result<Vec<u8>, crate::error::BinaryError> {
if let Ok(v) = self.write_to_bytes() {
Ok(v.as_slice().to_vec())
} else {
Err(crate::error::BinaryError::RecoverableUnknown)
}
}
/// Writes and unwraps `self` to the given buffer.
///
/// ⚠️ This method is not fail safe, and will panic if result is Err.
fn fparse(&self) -> Vec<u8> {
self.parse().unwrap()
}
/// Reads `self` from the given buffer.
fn compose(source: &[u8], position: &mut usize) -> Result<T, crate::error::BinaryError>
where
Self: Sized,
{
let mut reader = ByteReader::from(&source[*position..]);
if let Ok(v) = Self::read(&mut reader) {
Ok(v)
} else {
Err(crate::error::BinaryError::RecoverableUnknown)
}
}
/// Reads and unwraps `self` from the given buffer.
///
/// ⚠️ This method is not fail safe, and will panic if result is Err.
fn fcompose(source: &[u8], position: &mut usize) -> T
where
Self: Sized,
{
Self::compose(source, position).unwrap()
}
}
impl_streamable!(u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, f32, f64, bool, char, String);