1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
use core::convert::Infallible;

use super::{FieldCopyAccess, PrimitiveField};
use crate::endianness::{EndianKind, Endianness};
use crate::fields::primitive::view::FieldView;
use crate::fields::{Field, StorageIntoFieldView, StorageToFieldView};

macro_rules! nonzero_int_field {
    ($type:ty, $zero_type:ty) => {
        impl<E: Endianness, const OFFSET_: usize> FieldCopyAccess for PrimitiveField<$type, E, OFFSET_> {
            /// See [FieldCopyAccess::ReadError]
            type ReadError = NonZeroIsZeroError;
            /// See [FieldCopyAccess::WriteError]
            type WriteError = Infallible;
            /// See [FieldCopyAccess::HighLevelType]
            type HighLevelType = $type;

            doc_comment::doc_comment! {
                concat! {"
                Read the integer field from a given data region, assuming the defined layout, using the [Field] API.

                # Example:

                ```
                use binary_layout::prelude::*;

                binary_layout!(my_layout, LittleEndian, {
                    //... other fields ...
                    some_integer_field: ", stringify!($type), "
                    //... other fields ...
                });

                fn func(storage_data: &[u8]) -> Result<",stringify!($type), ", NonZeroIsZeroError>{
                    let read: ", stringify!($type), " = my_layout::some_integer_field::try_read(storage_data)?;
                    Ok(read)
                }
                ```
                "},
                #[inline(always)]
                fn try_read(storage: &[u8]) -> Result<$type, NonZeroIsZeroError> {
                    let value: [u8; core::mem::size_of::<$type>()] = storage[Self::OFFSET..(Self::OFFSET + core::mem::size_of::<$type>())].try_into().unwrap();
                    let value = match E::KIND {
                        EndianKind::Big => <$zero_type>::from_be_bytes(value),
                        EndianKind::Little => <$zero_type>::from_le_bytes(value),
                        EndianKind::Native => <$zero_type>::from_ne_bytes(value)
                    };
                    <$type>::new(value).ok_or(NonZeroIsZeroError(()))
                }
            }

            doc_comment::doc_comment! {
                concat! {"
                Write the integer field to a given data region, assuming the defined layout, using the [Field] API.

                # Example:

                ```
                use binary_layout::prelude::*;
                use core::convert::Infallible;

                binary_layout!(my_layout, LittleEndian, {
                    //... other fields ...
                    some_integer_field: ", stringify!($type), "
                    //... other fields ...
                });

                fn func(storage_data: &mut [u8]) {
                    let value = ", stringify!($type), "::new(10).unwrap();
                    my_layout::some_integer_field::try_write(storage_data, value).unwrap();
                }
                ```
                "},
                #[inline(always)]
                fn try_write(storage: &mut [u8], value: $type) -> Result<(), Infallible> {
                    let value_as_bytes = match E::KIND {
                        EndianKind::Big => value.get().to_be_bytes(),
                        EndianKind::Little => value.get().to_le_bytes(),
                        EndianKind::Native => value.get().to_ne_bytes(),
                    };
                    storage[Self::OFFSET..(Self::OFFSET + core::mem::size_of::<$type>())]
                        .copy_from_slice(&value_as_bytes);
                    Ok(())
                }
            }
        }

        impl_field_traits!($type);
    };
}

/// This error is thrown when trying to read a non-zero integer type, e.g. [NonZeroU32](core::num::NonZeroU32),
/// but the data being read was actually zero.
#[derive(Debug)]
pub struct NonZeroIsZeroError(pub(crate) ());

impl core::fmt::Display for NonZeroIsZeroError {
    fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(fmt, "NonZeroIsZeroError")
    }
}

#[cfg(feature = "std")]
impl std::error::Error for NonZeroIsZeroError {}

nonzero_int_field!(core::num::NonZeroI8, i8);
nonzero_int_field!(core::num::NonZeroI16, i16);
nonzero_int_field!(core::num::NonZeroI32, i32);
nonzero_int_field!(core::num::NonZeroI64, i64);
nonzero_int_field!(core::num::NonZeroI128, i128);
nonzero_int_field!(core::num::NonZeroU8, u8);
nonzero_int_field!(core::num::NonZeroU16, u16);
nonzero_int_field!(core::num::NonZeroU32, u32);
nonzero_int_field!(core::num::NonZeroU64, u64);
nonzero_int_field!(core::num::NonZeroU128, u128);

#[cfg(test)]
mod tests {
    use crate::prelude::*;
    use crate::PrimitiveField;

    macro_rules! test_nonzero {
        ($type:ty, $underlying_type:ty, $expected_size:expr, $value1:expr, $value2:expr) => {
            test_nonzero!(@case, $type, $underlying_type, $expected_size, $value1, $value2, little, LittleEndian, from_le_bytes);
            test_nonzero!(@case, $type, $underlying_type, $expected_size, $value1, $value2, big, BigEndian, from_be_bytes);
            test_nonzero!(@case, $type, $underlying_type, $expected_size, $value1, $value2, native, NativeEndian, from_ne_bytes);
        };
        (@case, $type:ty, $underlying_type:ty, $expected_size:expr, $value1:expr, $value2: expr, $endian:ident, $endian_type:ty, $endian_fn:ident) => {
            $crate::internal::paste! {
                #[allow(non_snake_case)]
                #[test]
                fn [<test_ $type _ $endian endian_metadata>]() {
                    type Field1 = PrimitiveField<$type, $endian_type, 5>;
                    type Field2 = PrimitiveField<$type, $endian_type, 123>;
                    type Field3 = PrimitiveField<$type, $endian_type, 150>;

                    assert_eq!(Some($expected_size), Field1::SIZE);
                    assert_eq!(5, Field1::OFFSET);
                    assert_eq!(Some($expected_size), Field2::SIZE);
                    assert_eq!(123, Field2::OFFSET);
                    assert_eq!(Some($expected_size), Field3::SIZE);
                    assert_eq!(150, Field3::OFFSET);
                }

                #[allow(non_snake_case)]
                #[test]
                fn [<test_ $type _ $endian endian_fieldapi_tryread_write>]() {
                    let mut storage = [0; 1024];

                    let value1 = <$type>::new($value1).unwrap();
                    let value2 = <$type>::new($value2).unwrap();

                    type Field1 = PrimitiveField<$type, $endian_type, 5>;
                    type Field2 = PrimitiveField<$type, $endian_type, 123>;
                    type Field3 = PrimitiveField<$type, $endian_type, 150>;

                    Field1::write(&mut storage, value1);
                    Field2::write(&mut storage, value2);
                    // don't write Field3, that should leave it at zero

                    assert_eq!(value1, Field1::try_read(&storage).unwrap());
                    assert_eq!(value2, Field2::try_read(&storage).unwrap());
                    assert!(matches!(Field3::try_read(&storage), Err(NonZeroIsZeroError(_))));

                    assert_eq!(value1, $type::new($underlying_type::$endian_fn((&storage[5..(5+$expected_size)]).try_into().unwrap())).unwrap());
                    assert_eq!(value2, $type::new($underlying_type::$endian_fn((&storage[123..(123+$expected_size)]).try_into().unwrap())).unwrap());
                    assert_eq!(0, $underlying_type::$endian_fn((&storage[150..(150+$expected_size)]).try_into().unwrap()));
                }

                #[allow(non_snake_case)]
                #[test]
                fn [<test_ $type _ $endian endian_fieldapi_tryread_trywrite>]() {
                    use crate::InfallibleResultExt;

                    let mut storage = [0; 1024];

                    let value1 = <$type>::new($value1).unwrap();
                    let value2 = <$type>::new($value2).unwrap();

                    type Field1 = PrimitiveField<$type, $endian_type, 5>;
                    type Field2 = PrimitiveField<$type, $endian_type, 123>;
                    type Field3 = PrimitiveField<$type, $endian_type, 150>;

                    Field1::try_write(&mut storage, value1).infallible_unwrap();
                    Field2::try_write(&mut storage, value2).infallible_unwrap();
                    // don't write Field3, that should leave it at zero

                    assert_eq!(value1, Field1::try_read(&storage).unwrap());
                    assert_eq!(value2, Field2::try_read(&storage).unwrap());
                    assert!(matches!(Field3::try_read(&storage), Err(NonZeroIsZeroError(_))));

                    assert_eq!(value1, $type::new($underlying_type::$endian_fn((&storage[5..(5+$expected_size)]).try_into().unwrap())).unwrap());
                    assert_eq!(value2, $type::new($underlying_type::$endian_fn((&storage[123..(123+$expected_size)]).try_into().unwrap())).unwrap());
                    assert_eq!(0, $underlying_type::$endian_fn((&storage[150..(150+$expected_size)]).try_into().unwrap()));
                }

                #[allow(non_snake_case)]
                #[test]
                fn [<test_ $type _ $endian endian_viewapi_tryread_write>]() {
                    binary_layout!(layout, $endian_type, {
                        field1: $type,
                        field2: $type,
                        field3: $type,
                    });
                    let mut storage = [0; 1024];
                    let mut view = layout::View::new(&mut storage);

                    let value1 = <$type>::new($value1).unwrap();
                    let value2 = <$type>::new($value2).unwrap();

                    view.field1_mut().write(value1);
                    view.field2_mut().write(value2);
                    // don't write Field3, that should leave it at zero

                    assert_eq!(value1, view.field1().try_read().unwrap());
                    assert_eq!(value2, view.field2().try_read().unwrap());
                    assert!(matches!(view.field3().try_read(), Err(NonZeroIsZeroError(_))));

                    assert_eq!(value1, $type::new($underlying_type::$endian_fn((&storage[0..($expected_size)]).try_into().unwrap())).unwrap());
                    assert_eq!(value2, $type::new($underlying_type::$endian_fn((&storage[$expected_size..(2*$expected_size)]).try_into().unwrap())).unwrap());
                    assert_eq!(0, $underlying_type::$endian_fn((&storage[2*$expected_size..(3*$expected_size)]).try_into().unwrap()));
                }

                #[allow(non_snake_case)]
                #[test]
                fn [<test_ $type _ $endian endian_viewapi_tryread_trywrite>]() {
                    binary_layout!(layout, $endian_type, {
                        field1: $type,
                        field2: $type,
                        field3: $type,
                    });
                    let mut storage = [0; 1024];
                    let mut view = layout::View::new(&mut storage);

                    let value1 = <$type>::new($value1).unwrap();
                    let value2 = <$type>::new($value2).unwrap();

                    view.field1_mut().try_write(value1).infallible_unwrap();
                    view.field2_mut().try_write(value2).infallible_unwrap();
                    // don't write Field3, that should leave it at zero

                    assert_eq!(value1, view.field1().try_read().unwrap());
                    assert_eq!(value2, view.field2().try_read().unwrap());
                    assert!(matches!(view.field3().try_read(), Err(NonZeroIsZeroError(_))));

                    assert_eq!(value1, $type::new($underlying_type::$endian_fn((&storage[0..($expected_size)]).try_into().unwrap())).unwrap());
                    assert_eq!(value2, $type::new($underlying_type::$endian_fn((&storage[$expected_size..(2*$expected_size)]).try_into().unwrap())).unwrap());
                    assert_eq!(0, $underlying_type::$endian_fn((&storage[2*$expected_size..(3*$expected_size)]).try_into().unwrap()));
                }
            }
        };
    }

    use core::num::{
        NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroU128, NonZeroU16,
        NonZeroU32, NonZeroU64, NonZeroU8,
    };

    test_nonzero!(NonZeroI8, i8, 1, 50, -20);
    test_nonzero!(NonZeroI16, i16, 2, 500, -2000);
    test_nonzero!(NonZeroI32, i32, 4, 10i32.pow(8), -(10i32.pow(7)));
    test_nonzero!(NonZeroI64, i64, 8, 10i64.pow(15), -(10i64.pow(14)));
    test_nonzero!(NonZeroI128, i128, 16, 10i128.pow(30), -(10i128.pow(28)));

    test_nonzero!(NonZeroU8, u8, 1, 50, 20);
    test_nonzero!(NonZeroU16, u16, 2, 500, 2000);
    test_nonzero!(NonZeroU32, u32, 4, 10u32.pow(8), (10u32.pow(7)));
    test_nonzero!(NonZeroU64, u64, 8, 10u64.pow(15), (10u64.pow(14)));
    test_nonzero!(NonZeroU128, u128, 16, 10u128.pow(30), (10u128.pow(28)));
}