1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/// This macro defines a data layout. Given such a layout, the [Field](crate::Field) or [FieldView](crate::FieldView) APIs can be used to access data based on it.
///
/// Data layouts define
/// - a name for the layout
/// - and endianness for its fields ([BigEndian](crate::BigEndian) or [LittleEndian](crate::LittleEndian))
/// - and an ordered collection of typed fields.
///
/// See [supported field types](crate#supported-field-types) for a list of supported field types.
///
/// # API
/// ```text
/// define_layout!(<<Name>>, <<Endianness>>, {
/// <<FieldName>>: <<FieldType>>,
/// <<FieldName>>: <<FieldType>>,
/// ...
/// });
/// ```
///
/// ## Field names
/// Field names can be any valid Rust identifiers, but it is recommended to avoid names that contain `storage`, `into_` or `_mut`.
/// This is because the [define_layout!](crate::define_layout!) macro creates a [View class with several accessors](#struct-view) for each field that contain those identifier parts.
///
/// ## Example
/// ```
/// use binary_layout::prelude::*;
///
/// define_layout!(icmp_packet, BigEndian, {
/// packet_type: u8,
/// code: u8,
/// checksum: u16,
/// rest_of_header: [u8; 4],
/// data_section: [u8], // open ended byte array, matches until the end of the packet
/// });
/// ```
///
/// # Generated code
/// See [icmp_packet](crate::example::icmp_packet) for an example.
///
/// This macro will define a module for you with several members:
/// - For each field, there will be a struct containing
/// - metadata like [OFFSET](crate::Field::OFFSET) and [SIZE](crate::Field::SIZE) as rust `const`s
/// - data accessors for the [Field](crate::Field) API
/// - The module will also contain a `View` struct that offers the [FieldView](crate::FieldView) API.
///
/// This macro will also generate rustdoc documentation for everything it generates. One of the best ways to figure out
/// how to use the generated layouts is to read the rustdoc documentation that was generated for them.
///
/// ## Metadata Example
/// ```
/// use binary_layout::prelude::*;
///
/// define_layout!(my_layout, LittleEndian, {
/// field1: u16,
/// field2: u32,
/// });
/// assert_eq!(2, my_layout::field2::OFFSET);
/// assert_eq!(Some(4), my_layout::field2::SIZE);
/// ```
///
/// ## struct View
/// See [icmp_packet::View](crate::example::icmp_packet::View) for an example.
///
/// You can create views over a storage by calling `View::new`. Views can be created based on
/// - Immutable borrowed storage: `&[u8]`
/// - Mutable borrowed storage: `&mut [u8]`
/// - Owning storage: impl `AsRef<u8>` (for example: `Vec<u8>`)
///
/// The generated `View` struct will offer
/// - `View::new(storage)` to create a `View`
/// - `View::into_storage(self)` to destroy a `View` and return the storage held
///
/// and it will offer the following accessors for each field
/// - `${field_name}()`: Read access. This returns a [FieldView](crate::FieldView) instance with read access.
/// - `${field_name}_mut()`: Read access. This returns a [FieldView](crate::FieldView) instance with write access.
/// - `into_${field_name}`: Extract access. This destroys the `View` and returns a [FieldView](crate::FieldView) instance owning the storage. Mostly useful for slice fields when you want to return an owning slice.
#[macro_export]
macro_rules! define_layout {
($name: ident, $endianness: ident, {$($field_name: ident : $field_type: ty $(as $underlying_type: ty)?),* $(,)?}) => {
$crate::internal::doc_comment!{
concat!{"
This module is autogenerated. It defines a layout using the [binary_layout] crate based on the following definition:
```ignore
define_layout!(", stringify!($name), ", ", stringify!($endianness), ", {", $("
", stringify!($field_name), ": ", stringify!($field_type), $(" as ", stringify!($underlying_type), )? ",", )* "
});
```
"},
#[allow(dead_code)]
pub mod $name {
#[allow(unused_imports)]
use super::*;
$crate::define_layout!(@impl_fields $crate::$endianness, Some(0), {$($field_name : $field_type $(as $underlying_type)?),*});
$crate::internal::doc_comment!{
concat!{"
The [View] struct defines the [FieldView](crate::FieldView) API.
An instance of [View] wraps a storage (either borrowed or owned)
and allows accessors for the layout fields.
This view is based on the following layout definition:
```ignore
define_layout!(", stringify!($name), ", ", stringify!($endianness), ", {", $("
", stringify!($field_name), ": ", stringify!($field_type), $(" as ", stringify!($underlying_type), )? ",",)* "
});
```
"},
pub struct View<S: AsRef<[u8]>> {
storage: S,
}
}
impl <S: AsRef<[u8]>> View<S> {
/// You can create views over a storage by calling [View::new].
///
/// `S` is the type of underlying storage. It can be
/// - Immutable borrowed storage: `&[u8]`
/// - Mutable borrowed storage: `&mut [u8]`
/// - Owning storage: impl `AsRef<u8>` (for example: `Vec<u8>`)
#[inline]
pub fn new(storage: S) -> Self {
Self {storage}
}
/// This destroys the view and returns the underlying storage back to you.
/// This is useful if you created an owning view (e.g. based on `Vec<u8>`)
/// and now need the underlying `Vec<u8>` back.
#[inline]
pub fn into_storage(self) -> S {
self.storage
}
$crate::define_layout!(@impl_view_into {$($field_name),*});
}
impl <S: AsRef<[u8]>> View<S> {
$crate::define_layout!(@impl_view_asref {$($field_name),*});
}
impl <S: AsRef<[u8]> + AsMut<[u8]>> View<S> {
$crate::define_layout!(@impl_view_asmut {$($field_name),*});
}
/// Use this as a marker type for using this layout as a nested field within another layout.
///
/// # Example
/// ```
/// use binary_layout::prelude::*;
///
/// define_layout!(icmp_header, BigEndian, {
/// packet_type: u8,
/// code: u8,
/// checksum: u16,
/// rest_of_header: [u8; 4],
/// });
/// define_layout!(icmp_packet, BigEndian, {
/// header: icmp_header::NestedView,
/// data_section: [u8], // open ended byte array, matches until the end of the packet
/// });
/// # fn main() {}
/// ```
pub struct NestedView;
impl <S: AsRef<[u8]>> $crate::internal::OwningNestedView<$crate::Data<S>> for NestedView where S: AsRef<[u8]> {
type View = View<$crate::Data<S>>;
#[inline(always)]
fn into_view(storage: $crate::Data<S>) -> Self::View {
Self::View {storage}
}
}
impl <S: AsRef<[u8]>> $crate::internal::BorrowingNestedView<S> for NestedView {
type View = View<S>;
#[inline(always)]
fn view(storage: S) -> Self::View {
Self::View {storage: storage.into()}
}
}
impl $crate::internal::NestedViewInfo for NestedView {
const SIZE: Option<usize> = SIZE;
}
}
}
};
(@impl_fields $endianness: ty, $offset_accumulator: expr, {}) => {
/// Total size of the layout in number of bytes.
/// This can be None if the layout ends with an open ended field like a byte slice.
pub const SIZE: Option<usize> = $offset_accumulator;
};
(@impl_fields $endianness: ty, $offset_accumulator: expr, {$name: ident : $type: ty as $underlying_type: ty $(, $($tail:tt)*)?}) => {
$crate::internal::doc_comment!{
concat!("Metadata and [Field](crate::Field) API accessors for the `", stringify!($name), "` field"),
#[allow(non_camel_case_types)]
pub type $name = $crate::WrappedField::<$underlying_type, $type, $crate::PrimitiveField::<$underlying_type, $endianness, {$crate::internal::unwrap_field_size($offset_accumulator)}>>;
}
$crate::define_layout!(@impl_fields $endianness, ($crate::internal::option_usize_add(<$name as $crate::Field>::OFFSET, <$name as $crate::Field>::SIZE)), {$($($tail)*)?});
};
(@impl_fields $endianness: ty, $offset_accumulator: expr, {$name: ident : $type: ty $(, $($tail:tt)*)?}) => {
$crate::internal::doc_comment!{
concat!("Metadata and [Field](crate::Field) API accessors for the `", stringify!($name), "` field"),
#[allow(non_camel_case_types)]
pub type $name = $crate::PrimitiveField::<$type, $endianness, {$crate::internal::unwrap_field_size($offset_accumulator)}>;
}
$crate::define_layout!(@impl_fields $endianness, ($crate::internal::option_usize_add(<$name as $crate::Field>::OFFSET, <$name as $crate::Field>::SIZE)), {$($($tail)*)?});
};
(@impl_view_asref {}) => {};
(@impl_view_asref {$name: ident $(, $name_tail: ident)*}) => {
$crate::internal::doc_comment!{
concat!("Return a [FieldView](crate::FieldView) with read access to the `", stringify!($name), "` field"),
#[inline]
pub fn $name(&self) -> <$name as $crate::internal::StorageToFieldView<&[u8]>>::View {
<$name as $crate::internal::StorageToFieldView<&[u8]>>::view(self.storage.as_ref())
}
}
$crate::define_layout!(@impl_view_asref {$($name_tail),*});
};
(@impl_view_asmut {}) => {};
(@impl_view_asmut {$name: ident $(, $name_tail: ident)*}) => {
$crate::internal::paste!{
$crate::internal::doc_comment!{
concat!("Return a [FieldView](crate::FieldView) with write access to the `", stringify!($name), "` field"),
#[inline]
pub fn [<$name _mut>](&mut self) -> <$name as $crate::internal::StorageToFieldView<&mut [u8]>>::View {
<$name as $crate::internal::StorageToFieldView<&mut [u8]>>::view(self.storage.as_mut())
}
}
}
$crate::define_layout!(@impl_view_asmut {$($name_tail),*});
};
(@impl_view_into {}) => {};
(@impl_view_into {$name: ident $(, $name_tail: ident)*}) => {
$crate::internal::paste!{
$crate::internal::doc_comment!{
concat!("Destroy the [View] and return a field accessor to the `", stringify!($name), "` field owning the storage. This is mostly useful for [FieldView::extract](crate::FieldView::extract)"),
#[inline]
pub fn [<into_ $name>](self) -> <$name as $crate::internal::StorageIntoFieldView<S>>::View {
<$name as $crate::internal::StorageIntoFieldView<S>>::into_view(self.storage)
}
}
}
$crate::define_layout!(@impl_view_into {$($name_tail),*});
};
}
// TODO This only exists because Option<usize>::unwrap() isn't const. Remove this once it is.
/// Internal function, don't use!
/// Unwraps an `Option<usize>`
#[inline(always)]
pub const fn unwrap_field_size(opt: Option<usize>) -> usize {
match opt {
Some(x) => x,
None => {
#[allow(unconditional_panic)]
#[allow(clippy::no_effect)]
["Error: Fields without a static size (e.g. open-ended byte arrays) can only be used at the end of a layout"][10];
#[allow(clippy::empty_loop)]
loop {}
}
}
}
/// Internal function, don't use!
#[inline(always)]
pub const fn option_usize_add(lhs: usize, rhs: Option<usize>) -> Option<usize> {
match (lhs, rhs) {
(lhs, Some(rhs)) => Some(lhs + rhs),
(_, None) => None,
}
}
#[cfg(test)]
mod tests {
use crate::prelude::*;
use rand::{rngs::StdRng, RngCore, SeedableRng};
fn data_region(size: usize, seed: u64) -> Vec<u8> {
let mut rng = StdRng::seed_from_u64(seed);
let mut res = vec![0; size];
rng.fill_bytes(&mut res);
res
}
define_layout!(module_level_layout, LittleEndian, {
first: i8,
second: i64,
third: u16,
});
#[test]
fn layouts_can_be_defined_at_module_level() {
let storage: [u8; 1024] = [0; 1024];
let view = module_level_layout::View::new(storage);
assert_eq!(0, view.third().read());
}
#[test]
fn layouts_can_be_defined_at_function_level() {
define_layout!(function_level_layout, LittleEndian, {
first: i8,
second: i64,
third: u16,
});
let storage: [u8; 1024] = [0; 1024];
let view = function_level_layout::View::new(storage);
assert_eq!(0, view.third().read());
}
#[test]
fn can_be_created_with_and_without_trailing_comma() {
define_layout!(first, LittleEndian, { field: u8 });
define_layout!(second, LittleEndian, {
field: u8,
second: u16
});
define_layout!(third, LittleEndian, {
field: u8,
});
define_layout!(fourth, LittleEndian, {
field: u8,
second: u16,
});
}
#[test]
fn there_can_be_multiple_views_if_readonly() {
define_layout!(my_layout, BigEndian, {
field1: u16,
field2: i64,
});
let storage = data_region(1024, 0);
let view1 = my_layout::View::new(&storage);
let view2 = my_layout::View::new(&storage);
view1.field1().read();
view2.field1().read();
}
#[test]
fn size_of_sized_layout() {
define_layout!(my_layout, LittleEndian, {
field1: u16,
field2: i64,
});
assert_eq!(Some(10), my_layout::SIZE);
}
#[test]
fn size_of_unsized_layout() {
define_layout!(my_layout, LittleEndian, {
field: u16,
tail: [u8],
});
assert_eq!(None, my_layout::SIZE);
}
}