binary_heap_plus2/
binary_heap.rs

1// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! A priority queue implemented with a binary heap.
12//!
13//! Note: This version is folked from Rust standartd library, which only supports
14//! max heap.
15//!
16//! Insertion and popping the largest element have `O(log n)` time complexity.
17//! Checking the largest element is `O(1)`. Converting a vector to a binary heap
18//! can be done in-place, and has `O(n)` complexity. A binary heap can also be
19//! converted to a sorted vector in-place, allowing it to be used for an `O(n
20//! log n)` in-place heapsort.
21//!
22//! # Examples
23//!
24//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
25//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
26//! It shows how to use [`BinaryHeap`] with custom types.
27//!
28//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
29//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
30//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
31//! [`BinaryHeap`]: struct.BinaryHeap.html
32//!
33//! ```
34//! use std::cmp::Ordering;
35//! use binary_heap_plus2::*;
36//! use std::usize;
37//!
38//! #[derive(Copy, Clone, Eq, PartialEq)]
39//! struct State {
40//!     cost: usize,
41//!     position: usize,
42//! }
43//!
44//! // The priority queue depends on `Ord`.
45//! // Explicitly implement the trait so the queue becomes a min-heap
46//! // instead of a max-heap.
47//! impl Ord for State {
48//!     fn cmp(&self, other: &State) -> Ordering {
49//!         // Notice that the we flip the ordering on costs.
50//!         // In case of a tie we compare positions - this step is necessary
51//!         // to make implementations of `PartialEq` and `Ord` consistent.
52//!         other.cost.cmp(&self.cost)
53//!             .then_with(|| self.position.cmp(&other.position))
54//!     }
55//! }
56//!
57//! // `PartialOrd` needs to be implemented as well.
58//! impl PartialOrd for State {
59//!     fn partial_cmp(&self, other: &State) -> Option<Ordering> {
60//!         Some(self.cmp(other))
61//!     }
62//! }
63//!
64//! // Each node is represented as an `usize`, for a shorter implementation.
65//! struct Edge {
66//!     node: usize,
67//!     cost: usize,
68//! }
69//!
70//! // Dijkstra's shortest path algorithm.
71//!
72//! // Start at `start` and use `dist` to track the current shortest distance
73//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
74//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
75//! // for a simpler implementation.
76//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
77//!     // dist[node] = current shortest distance from `start` to `node`
78//!     let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
79//!
80//!     let mut heap = BinaryHeap::new();
81//!
82//!     // We're at `start`, with a zero cost
83//!     dist[start] = 0;
84//!     heap.push(State { cost: 0, position: start });
85//!
86//!     // Examine the frontier with lower cost nodes first (min-heap)
87//!     while let Some(State { cost, position }) = heap.pop() {
88//!         // Alternatively we could have continued to find all shortest paths
89//!         if position == goal { return Some(cost); }
90//!
91//!         // Important as we may have already found a better way
92//!         if cost > dist[position] { continue; }
93//!
94//!         // For each node we can reach, see if we can find a way with
95//!         // a lower cost going through this node
96//!         for edge in &adj_list[position] {
97//!             let next = State { cost: cost + edge.cost, position: edge.node };
98//!
99//!             // If so, add it to the frontier and continue
100//!             if next.cost < dist[next.position] {
101//!                 heap.push(next);
102//!                 // Relaxation, we have now found a better way
103//!                 dist[next.position] = next.cost;
104//!             }
105//!         }
106//!     }
107//!
108//!     // Goal not reachable
109//!     None
110//! }
111//!
112//! fn main() {
113//!     // This is the directed graph we're going to use.
114//!     // The node numbers correspond to the different states,
115//!     // and the edge weights symbolize the cost of moving
116//!     // from one node to another.
117//!     // Note that the edges are one-way.
118//!     //
119//!     //                  7
120//!     //          +-----------------+
121//!     //          |                 |
122//!     //          v   1        2    |  2
123//!     //          0 -----> 1 -----> 3 ---> 4
124//!     //          |        ^        ^      ^
125//!     //          |        | 1      |      |
126//!     //          |        |        | 3    | 1
127//!     //          +------> 2 -------+      |
128//!     //           10      |               |
129//!     //                   +---------------+
130//!     //
131//!     // The graph is represented as an adjacency list where each index,
132//!     // corresponding to a node value, has a list of outgoing edges.
133//!     // Chosen for its efficiency.
134//!     let graph = vec![
135//!         // Node 0
136//!         vec![Edge { node: 2, cost: 10 },
137//!              Edge { node: 1, cost: 1 }],
138//!         // Node 1
139//!         vec![Edge { node: 3, cost: 2 }],
140//!         // Node 2
141//!         vec![Edge { node: 1, cost: 1 },
142//!              Edge { node: 3, cost: 3 },
143//!              Edge { node: 4, cost: 1 }],
144//!         // Node 3
145//!         vec![Edge { node: 0, cost: 7 },
146//!              Edge { node: 4, cost: 2 }],
147//!         // Node 4
148//!         vec![]];
149//!
150//!     assert_eq!(shortest_path(&graph, 0, 1), Some(1));
151//!     assert_eq!(shortest_path(&graph, 0, 3), Some(3));
152//!     assert_eq!(shortest_path(&graph, 3, 0), Some(7));
153//!     assert_eq!(shortest_path(&graph, 0, 4), Some(5));
154//!     assert_eq!(shortest_path(&graph, 4, 0), None);
155//! }
156//! ```
157
158#![allow(clippy::needless_doctest_main)]
159#![allow(missing_docs)]
160// #![stable(feature = "rust1", since = "1.0.0")]
161
162// use core::ops::{Deref, DerefMut, Place, Placer, InPlace};
163// use core::iter::{FromIterator, FusedIterator};
164use std::cmp::Ordering;
165use std::iter::FromIterator;
166use std::slice;
167// use std::iter::FusedIterator;
168// use std::vec::Drain;
169use compare::Compare;
170use core::fmt;
171use core::mem::{size_of, swap};
172use core::ptr;
173#[cfg(feature = "serde")]
174use serde::{Deserialize, Serialize};
175use std::ops::Deref;
176use std::ops::DerefMut;
177use std::vec;
178
179// use slice;
180// use vec::{self, Vec};
181
182// use super::SpecExtend;
183
184/// A priority queue implemented with a binary heap.
185///
186/// This will be a max-heap.
187///
188/// It is a logic error for an item to be modified in such a way that the
189/// item's ordering relative to any other item, as determined by the `Ord`
190/// trait, changes while it is in the heap. This is normally only possible
191/// through `Cell`, `RefCell`, global state, I/O, or unsafe code.
192///
193/// # Examples
194///
195/// ```
196/// use binary_heap_plus2::*;
197///
198/// // Type inference lets us omit an explicit type signature (which
199/// // would be `BinaryHeap<i32, MaxComparator>` in this example).
200/// let mut heap = BinaryHeap::new();
201///
202/// // We can use peek to look at the next item in the heap. In this case,
203/// // there's no items in there yet so we get None.
204/// assert_eq!(heap.peek(), None);
205///
206/// // Let's add some scores...
207/// heap.push(1);
208/// heap.push(5);
209/// heap.push(2);
210///
211/// // Now peek shows the most important item in the heap.
212/// assert_eq!(heap.peek(), Some(&5));
213///
214/// // We can check the length of a heap.
215/// assert_eq!(heap.len(), 3);
216///
217/// // We can iterate over the items in the heap, although they are returned in
218/// // a random order.
219/// for x in &heap {
220///     println!("{}", x);
221/// }
222///
223/// // If we instead pop these scores, they should come back in order.
224/// assert_eq!(heap.pop(), Some(5));
225/// assert_eq!(heap.pop(), Some(2));
226/// assert_eq!(heap.pop(), Some(1));
227/// assert_eq!(heap.pop(), None);
228///
229/// // We can clear the heap of any remaining items.
230/// heap.clear();
231///
232/// // The heap should now be empty.
233/// assert!(heap.is_empty())
234/// ```
235// #[stable(feature = "rust1", since = "1.0.0")]
236#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
237pub struct BinaryHeap<T, C = MaxComparator>
238where
239    C: Compare<T>,
240{
241    data: Vec<T>,
242    cmp: C,
243}
244
245/// For `T` that implements `Ord`, you can use this struct to quickly
246/// set up a max heap.
247#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
248#[derive(Clone, Copy, Default, PartialEq, Eq, Debug)]
249pub struct MaxComparator;
250
251impl<T: Ord> Compare<T> for MaxComparator {
252    fn compare(&self, a: &T, b: &T) -> Ordering {
253        a.cmp(&b)
254    }
255}
256
257/// For `T` that implements `Ord`, you can use this struct to quickly
258/// set up a min heap.
259#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
260#[derive(Clone, Copy, Default, PartialEq, Eq, Debug)]
261pub struct MinComparator;
262
263impl<T: Ord> Compare<T> for MinComparator {
264    fn compare(&self, a: &T, b: &T) -> Ordering {
265        b.cmp(&a)
266    }
267}
268
269/// The comparator defined by closure
270#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
271#[derive(Clone, Copy, Default, PartialEq, Eq, Debug)]
272pub struct FnComparator<F>(pub F);
273
274impl<T, F> Compare<T> for FnComparator<F>
275where
276    F: Fn(&T, &T) -> Ordering,
277{
278    fn compare(&self, a: &T, b: &T) -> Ordering {
279        self.0(a, b)
280    }
281}
282
283/// The comparator ordered by key
284#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
285#[derive(Clone, Copy, Default, PartialEq, Eq, Debug)]
286pub struct KeyComparator<F>(pub F);
287
288impl<K: Ord, T, F> Compare<T> for KeyComparator<F>
289where
290    F: Fn(&T) -> K,
291{
292    fn compare(&self, a: &T, b: &T) -> Ordering {
293        self.0(a).cmp(&self.0(b))
294    }
295}
296
297/// Structure wrapping a mutable reference to the greatest item on a
298/// `BinaryHeap`.
299///
300/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See
301/// its documentation for more.
302///
303/// [`peek_mut`]: struct.BinaryHeap.html#method.peek_mut
304/// [`BinaryHeap`]: struct.BinaryHeap.html
305// #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
306pub struct PeekMut<'a, T: 'a, C: 'a + Compare<T>> {
307    heap: &'a mut BinaryHeap<T, C>,
308    sift: bool,
309}
310
311// #[stable(feature = "collection_debug", since = "1.17.0")]
312impl<'a, T: fmt::Debug, C: Compare<T>> fmt::Debug for PeekMut<'a, T, C> {
313    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
314        f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish()
315    }
316}
317
318// #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
319impl<'a, T, C: Compare<T>> Drop for PeekMut<'a, T, C> {
320    fn drop(&mut self) {
321        if self.sift {
322            self.heap.sift_down(0);
323        }
324    }
325}
326
327// #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
328impl<'a, T, C: Compare<T>> Deref for PeekMut<'a, T, C> {
329    type Target = T;
330    fn deref(&self) -> &T {
331        &self.heap.data[0]
332    }
333}
334
335// #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
336impl<'a, T, C: Compare<T>> DerefMut for PeekMut<'a, T, C> {
337    fn deref_mut(&mut self) -> &mut T {
338        &mut self.heap.data[0]
339    }
340}
341
342impl<'a, T, C: Compare<T>> PeekMut<'a, T, C> {
343    /// Removes the peeked value from the heap and returns it.
344    // #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")]
345    pub fn pop(mut this: PeekMut<'a, T, C>) -> T {
346        let value = this.heap.pop().unwrap();
347        this.sift = false;
348        value
349    }
350}
351
352// #[stable(feature = "rust1", since = "1.0.0")]
353impl<T: Clone, C: Compare<T> + Clone> Clone for BinaryHeap<T, C> {
354    fn clone(&self) -> Self {
355        BinaryHeap {
356            data: self.data.clone(),
357            cmp: self.cmp.clone(),
358        }
359    }
360
361    fn clone_from(&mut self, source: &Self) {
362        self.data.clone_from(&source.data);
363    }
364}
365
366// #[stable(feature = "rust1", since = "1.0.0")]
367impl<T: Ord> Default for BinaryHeap<T> {
368    /// Creates an empty `BinaryHeap<T>`.
369    #[inline]
370    fn default() -> BinaryHeap<T> {
371        BinaryHeap::new()
372    }
373}
374
375// #[stable(feature = "binaryheap_debug", since = "1.4.0")]
376impl<T: fmt::Debug, C: Compare<T>> fmt::Debug for BinaryHeap<T, C> {
377    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
378        f.debug_list().entries(self.iter()).finish()
379    }
380}
381
382impl<T, C: Compare<T> + Default> BinaryHeap<T, C> {
383    /// Generic constructor for `BinaryHeap` from `Vec`.
384    ///
385    /// Because `BinaryHeap` stores the elements in its internal `Vec`,
386    /// it's natural to construct it from `Vec`.
387    pub fn from_vec(vec: Vec<T>) -> Self {
388        BinaryHeap::from_vec_cmp(vec, C::default())
389    }
390}
391
392impl<T, C: Compare<T>> BinaryHeap<T, C> {
393    /// Generic constructor for `BinaryHeap` from `Vec` and comparator.
394    ///
395    /// Because `BinaryHeap` stores the elements in its internal `Vec`,
396    /// it's natural to construct it from `Vec`.
397    pub fn from_vec_cmp(vec: Vec<T>, cmp: C) -> Self {
398        BinaryHeap::from_vec_cmp_rebuild(vec, cmp, true)
399    }
400
401    /// Generic constructor for `BinaryHeap` from `Vec` and comparator.
402    ///
403    /// Because `BinaryHeap` stores the elements in its internal `Vec`,
404    /// it's natural to construct it from `Vec`.
405    pub fn from_vec_cmp_rebuild(vec: Vec<T>, cmp: C, rebuild: bool) -> Self {
406        let mut heap = BinaryHeap { data: vec, cmp };
407        if rebuild && !heap.data.is_empty() {
408            heap.rebuild();
409        }
410        heap
411    }
412
413    /// Replaces the comparator of binary heap.
414    pub fn replace_cmp(&mut self, cmp: C, rebuild: bool) {
415        self.cmp = cmp;
416        if rebuild {
417            self.rebuild();
418        }
419    }
420}
421
422impl<T: Ord> BinaryHeap<T> {
423    /// Creates an empty `BinaryHeap`.
424    ///
425    /// This default version will create a max-heap.
426    ///
427    /// # Examples
428    ///
429    /// Basic usage:
430    ///
431    /// ```
432    /// use binary_heap_plus2::*;
433    /// let mut heap = BinaryHeap::new();
434    /// heap.push(3);
435    /// heap.push(1);
436    /// heap.push(5);
437    /// assert_eq!(heap.pop(), Some(5));
438    /// ```
439    // #[stable(feature = "rust1", since = "1.0.0")]
440    pub fn new() -> Self {
441        BinaryHeap::from_vec(vec![])
442    }
443
444    /// Creates an empty `BinaryHeap` with a specific capacity.
445    /// This preallocates enough memory for `capacity` elements,
446    /// so that the `BinaryHeap` does not have to be reallocated
447    /// until it contains at least that many values.
448    ///
449    /// This default version will create a max-heap.
450    ///
451    /// # Examples
452    ///
453    /// Basic usage:
454    ///
455    /// ```
456    /// use binary_heap_plus2::*;
457    /// let mut heap = BinaryHeap::with_capacity(10);
458    /// assert_eq!(heap.capacity(), 10);
459    /// heap.push(3);
460    /// heap.push(1);
461    /// heap.push(5);
462    /// assert_eq!(heap.pop(), Some(5));
463    /// ```
464    // #[stable(feature = "rust1", since = "1.0.0")]
465    pub fn with_capacity(capacity: usize) -> Self {
466        BinaryHeap::from_vec(Vec::with_capacity(capacity))
467    }
468}
469
470impl<T: Ord> BinaryHeap<T, MinComparator> {
471    /// Creates an empty `BinaryHeap`.
472    ///
473    /// The `_min()` version will create a min-heap.
474    ///
475    /// # Examples
476    ///
477    /// Basic usage:
478    ///
479    /// ```
480    /// use binary_heap_plus2::*;
481    /// let mut heap = BinaryHeap::new_min();
482    /// heap.push(3);
483    /// heap.push(1);
484    /// heap.push(5);
485    /// assert_eq!(heap.pop(), Some(1));
486    /// ```
487    pub fn new_min() -> Self {
488        BinaryHeap::from_vec(vec![])
489    }
490
491    /// Creates an empty `BinaryHeap` with a specific capacity.
492    /// This preallocates enough memory for `capacity` elements,
493    /// so that the `BinaryHeap` does not have to be reallocated
494    /// until it contains at least that many values.
495    ///
496    /// The `_min()` version will create a min-heap.
497    ///
498    /// # Examples
499    ///
500    /// Basic usage:
501    ///
502    /// ```
503    /// use binary_heap_plus2::*;
504    /// let mut heap = BinaryHeap::with_capacity_min(10);
505    /// assert_eq!(heap.capacity(), 10);
506    /// heap.push(3);
507    /// heap.push(1);
508    /// heap.push(5);
509    /// assert_eq!(heap.pop(), Some(1));
510    /// ```
511    pub fn with_capacity_min(capacity: usize) -> Self {
512        BinaryHeap::from_vec(Vec::with_capacity(capacity))
513    }
514}
515
516impl<T, F> BinaryHeap<T, FnComparator<F>>
517where
518    F: Fn(&T, &T) -> Ordering,
519{
520    /// Creates an empty `BinaryHeap`.
521    ///
522    /// The `_by()` version will create a heap ordered by given closure.
523    ///
524    /// # Examples
525    ///
526    /// Basic usage:
527    ///
528    /// ```
529    /// use binary_heap_plus2::*;
530    /// let mut heap = BinaryHeap::new_by(|a: &i32, b: &i32| b.cmp(a));
531    /// heap.push(3);
532    /// heap.push(1);
533    /// heap.push(5);
534    /// assert_eq!(heap.pop(), Some(1));
535    /// ```
536    pub fn new_by(f: F) -> Self {
537        BinaryHeap::from_vec_cmp(vec![], FnComparator(f))
538    }
539
540    /// Creates an empty `BinaryHeap` with a specific capacity.
541    /// This preallocates enough memory for `capacity` elements,
542    /// so that the `BinaryHeap` does not have to be reallocated
543    /// until it contains at least that many values.
544    ///
545    /// The `_by()` version will create a heap ordered by given closure.
546    ///
547    /// # Examples
548    ///
549    /// Basic usage:
550    ///
551    /// ```
552    /// use binary_heap_plus2::*;
553    /// let mut heap = BinaryHeap::with_capacity_by(10, |a: &i32, b: &i32| b.cmp(a));
554    /// assert_eq!(heap.capacity(), 10);
555    /// heap.push(3);
556    /// heap.push(1);
557    /// heap.push(5);
558    /// assert_eq!(heap.pop(), Some(1));
559    /// ```
560    pub fn with_capacity_by(capacity: usize, f: F) -> Self {
561        BinaryHeap::from_vec_cmp(Vec::with_capacity(capacity), FnComparator(f))
562    }
563}
564
565impl<T, F, K: Ord> BinaryHeap<T, KeyComparator<F>>
566where
567    F: Fn(&T) -> K,
568{
569    /// Creates an empty `BinaryHeap`.
570    ///
571    /// The `_by_key()` version will create a heap ordered by key converted by given closure.
572    ///
573    /// # Examples
574    ///
575    /// Basic usage:
576    ///
577    /// ```
578    /// use binary_heap_plus2::*;
579    /// let mut heap = BinaryHeap::new_by_key(|a: &i32| a % 4);
580    /// heap.push(3);
581    /// heap.push(1);
582    /// heap.push(5);
583    /// assert_eq!(heap.pop(), Some(3));
584    /// ```
585    pub fn new_by_key(f: F) -> Self {
586        BinaryHeap::from_vec_cmp(vec![], KeyComparator(f))
587    }
588
589    /// Creates an empty `BinaryHeap` with a specific capacity.
590    /// This preallocates enough memory for `capacity` elements,
591    /// so that the `BinaryHeap` does not have to be reallocated
592    /// until it contains at least that many values.
593    ///
594    /// The `_by_key()` version will create a heap ordered by key coverted by given closure.
595    ///
596    /// # Examples
597    ///
598    /// Basic usage:
599    ///
600    /// ```
601    /// use binary_heap_plus2::*;
602    /// let mut heap = BinaryHeap::with_capacity_by_key(10, |a: &i32| a % 4);
603    /// assert_eq!(heap.capacity(), 10);
604    /// heap.push(3);
605    /// heap.push(1);
606    /// heap.push(5);
607    /// assert_eq!(heap.pop(), Some(3));
608    /// ```
609    pub fn with_capacity_by_key(capacity: usize, f: F) -> Self {
610        BinaryHeap::from_vec_cmp(Vec::with_capacity(capacity), KeyComparator(f))
611    }
612}
613
614impl<T, C: Compare<T>> BinaryHeap<T, C> {
615    /// Returns an iterator visiting all values in the underlying vector, in
616    /// arbitrary order.
617    ///
618    /// # Examples
619    ///
620    /// Basic usage:
621    ///
622    /// ```
623    /// use binary_heap_plus2::*;
624    /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
625    ///
626    /// // Print 1, 2, 3, 4 in arbitrary order
627    /// for x in heap.iter() {
628    ///     println!("{}", x);
629    /// }
630    /// ```
631    // #[stable(feature = "rust1", since = "1.0.0")]
632    pub fn iter(&self) -> Iter<T> {
633        Iter {
634            iter: self.data.iter(),
635        }
636    }
637
638    /// Returns an iterator which retrieves elements in heap order.
639    /// This method consumes the original heap.
640    ///
641    /// # Examples
642    ///
643    /// Basic usage:
644    ///
645    /// ```
646    /// use binary_heap_plus2::*;
647    /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5]);
648    ///
649    /// assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), vec![5, 4]);
650    /// ```
651    // #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
652    pub fn into_iter_sorted(self) -> IntoIterSorted<T, C> {
653        IntoIterSorted { inner: self }
654    }
655
656    /// Returns the greatest item in the binary heap, or `None` if it is empty.
657    ///
658    /// # Examples
659    ///
660    /// Basic usage:
661    ///
662    /// ```
663    /// use binary_heap_plus2::*;
664    /// let mut heap = BinaryHeap::new();
665    /// assert_eq!(heap.peek(), None);
666    ///
667    /// heap.push(1);
668    /// heap.push(5);
669    /// heap.push(2);
670    /// assert_eq!(heap.peek(), Some(&5));
671    ///
672    /// ```
673    // #[stable(feature = "rust1", since = "1.0.0")]
674    pub fn peek(&self) -> Option<&T> {
675        self.data.get(0)
676    }
677
678    /// Returns a mutable reference to the greatest item in the binary heap, or
679    /// `None` if it is empty.
680    ///
681    /// Note: If the `PeekMut` value is leaked, the heap may be in an
682    /// inconsistent state.
683    ///
684    /// # Examples
685    ///
686    /// Basic usage:
687    ///
688    /// ```
689    /// use binary_heap_plus2::*;
690    /// let mut heap = BinaryHeap::new();
691    /// assert!(heap.peek_mut().is_none());
692    ///
693    /// heap.push(1);
694    /// heap.push(5);
695    /// heap.push(2);
696    /// {
697    ///     let mut val = heap.peek_mut().unwrap();
698    ///     *val = 0;
699    /// }
700    /// assert_eq!(heap.peek(), Some(&2));
701    /// ```
702    // #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
703    pub fn peek_mut(&mut self) -> Option<PeekMut<T, C>> {
704        if self.is_empty() {
705            None
706        } else {
707            Some(PeekMut {
708                heap: self,
709                sift: true,
710            })
711        }
712    }
713
714    /// Returns the number of elements the binary heap can hold without reallocating.
715    ///
716    /// # Examples
717    ///
718    /// Basic usage:
719    ///
720    /// ```
721    /// use binary_heap_plus2::*;
722    /// let mut heap = BinaryHeap::with_capacity(100);
723    /// assert!(heap.capacity() >= 100);
724    /// heap.push(4);
725    /// ```
726    // #[stable(feature = "rust1", since = "1.0.0")]
727    pub fn capacity(&self) -> usize {
728        self.data.capacity()
729    }
730
731    /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
732    /// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
733    ///
734    /// Note that the allocator may give the collection more space than it requests. Therefore
735    /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future
736    /// insertions are expected.
737    ///
738    /// # Panics
739    ///
740    /// Panics if the new capacity overflows `usize`.
741    ///
742    /// # Examples
743    ///
744    /// Basic usage:
745    ///
746    /// ```
747    /// use binary_heap_plus2::*;
748    /// let mut heap = BinaryHeap::new();
749    /// heap.reserve_exact(100);
750    /// assert!(heap.capacity() >= 100);
751    /// heap.push(4);
752    /// ```
753    ///
754    /// [`reserve`]: #method.reserve
755    // #[stable(feature = "rust1", since = "1.0.0")]
756    pub fn reserve_exact(&mut self, additional: usize) {
757        self.data.reserve_exact(additional);
758    }
759
760    /// Reserves capacity for at least `additional` more elements to be inserted in the
761    /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
762    ///
763    /// # Panics
764    ///
765    /// Panics if the new capacity overflows `usize`.
766    ///
767    /// # Examples
768    ///
769    /// Basic usage:
770    ///
771    /// ```
772    /// use binary_heap_plus2::*;
773    /// let mut heap = BinaryHeap::new();
774    /// heap.reserve(100);
775    /// assert!(heap.capacity() >= 100);
776    /// heap.push(4);
777    /// ```
778    // #[stable(feature = "rust1", since = "1.0.0")]
779    pub fn reserve(&mut self, additional: usize) {
780        self.data.reserve(additional);
781    }
782
783    /// Discards as much additional capacity as possible.
784    ///
785    /// # Examples
786    ///
787    /// Basic usage:
788    ///
789    /// ```
790    /// use binary_heap_plus2::*;
791    /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
792    ///
793    /// assert!(heap.capacity() >= 100);
794    /// heap.shrink_to_fit();
795    /// assert!(heap.capacity() == 0);
796    /// ```
797    // #[stable(feature = "rust1", since = "1.0.0")]
798    pub fn shrink_to_fit(&mut self) {
799        self.data.shrink_to_fit();
800    }
801
802    /// Removes the greatest item from the binary heap and returns it, or `None` if it
803    /// is empty.
804    ///
805    /// # Examples
806    ///
807    /// Basic usage:
808    ///
809    /// ```
810    /// use binary_heap_plus2::*;
811    /// let mut heap = BinaryHeap::from(vec![1, 3]);
812    ///
813    /// assert_eq!(heap.pop(), Some(3));
814    /// assert_eq!(heap.pop(), Some(1));
815    /// assert_eq!(heap.pop(), None);
816    /// ```
817    // #[stable(feature = "rust1", since = "1.0.0")]
818    pub fn pop(&mut self) -> Option<T> {
819        self.data.pop().map(|mut item| {
820            if !self.is_empty() {
821                swap(&mut item, &mut self.data[0]);
822                self.sift_down_to_bottom(0);
823            }
824            item
825        })
826    }
827
828    /// Pushes an item onto the binary heap.
829    ///
830    /// # Examples
831    ///
832    /// Basic usage:
833    ///
834    /// ```
835    /// use binary_heap_plus2::*;
836    /// let mut heap = BinaryHeap::new();
837    /// heap.push(3);
838    /// heap.push(5);
839    /// heap.push(1);
840    ///
841    /// assert_eq!(heap.len(), 3);
842    /// assert_eq!(heap.peek(), Some(&5));
843    /// ```
844    // #[stable(feature = "rust1", since = "1.0.0")]
845    pub fn push(&mut self, item: T) {
846        let old_len = self.len();
847        self.data.push(item);
848        self.sift_up(0, old_len);
849    }
850
851    /// Consumes the `BinaryHeap` and returns the underlying vector
852    /// in arbitrary order.
853    ///
854    /// # Examples
855    ///
856    /// Basic usage:
857    ///
858    /// ```
859    /// use binary_heap_plus2::*;
860    /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]);
861    /// let vec = heap.into_vec();
862    ///
863    /// // Will print in some order
864    /// for x in vec {
865    ///     println!("{}", x);
866    /// }
867    /// ```
868    // #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
869    pub fn into_vec(self) -> Vec<T> {
870        self.into()
871    }
872
873    /// Consumes the `BinaryHeap` and returns a vector in sorted
874    /// (ascending) order.
875    ///
876    /// # Examples
877    ///
878    /// Basic usage:
879    ///
880    /// ```
881    /// use binary_heap_plus2::*;
882    ///
883    /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]);
884    /// heap.push(6);
885    /// heap.push(3);
886    ///
887    /// let vec = heap.into_sorted_vec();
888    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
889    /// ```
890    // #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
891    pub fn into_sorted_vec(mut self) -> Vec<T> {
892        let mut end = self.len();
893        while end > 1 {
894            end -= 1;
895            self.data.swap(0, end);
896            self.sift_down_range(0, end);
897        }
898        self.into_vec()
899    }
900
901    // The implementations of sift_up and sift_down use unsafe blocks in
902    // order to move an element out of the vector (leaving behind a
903    // hole), shift along the others and move the removed element back into the
904    // vector at the final location of the hole.
905    // The `Hole` type is used to represent this, and make sure
906    // the hole is filled back at the end of its scope, even on panic.
907    // Using a hole reduces the constant factor compared to using swaps,
908    // which involves twice as many moves.
909    fn sift_up(&mut self, start: usize, pos: usize) -> usize {
910        unsafe {
911            // Take out the value at `pos` and create a hole.
912            let mut hole = Hole::new(&mut self.data, pos);
913
914            while hole.pos() > start {
915                let parent = (hole.pos() - 1) / 2;
916                // if hole.element() <= hole.get(parent) {
917                if self.cmp.compare(hole.element(), hole.get(parent)) != Ordering::Greater {
918                    break;
919                }
920                hole.move_to(parent);
921            }
922            hole.pos()
923        }
924    }
925
926    /// Take an element at `pos` and move it down the heap,
927    /// while its children are larger.
928    fn sift_down_range(&mut self, pos: usize, end: usize) {
929        unsafe {
930            let mut hole = Hole::new(&mut self.data, pos);
931            let mut child = 2 * pos + 1;
932            while child < end {
933                let right = child + 1;
934                // compare with the greater of the two children
935                // if right < end && !(hole.get(child) > hole.get(right)) {
936                if right < end
937                    && self.cmp.compare(hole.get(child), hole.get(right)) != Ordering::Greater
938                {
939                    child = right;
940                }
941                // if we are already in order, stop.
942                // if hole.element() >= hole.get(child) {
943                if self.cmp.compare(hole.element(), hole.get(child)) != Ordering::Less {
944                    break;
945                }
946                hole.move_to(child);
947                child = 2 * hole.pos() + 1;
948            }
949        }
950    }
951
952    fn sift_down(&mut self, pos: usize) {
953        let len = self.len();
954        self.sift_down_range(pos, len);
955    }
956
957    /// Take an element at `pos` and move it all the way down the heap,
958    /// then sift it up to its position.
959    ///
960    /// Note: This is faster when the element is known to be large / should
961    /// be closer to the bottom.
962    fn sift_down_to_bottom(&mut self, mut pos: usize) {
963        let end = self.len();
964        let start = pos;
965        unsafe {
966            let mut hole = Hole::new(&mut self.data, pos);
967            let mut child = 2 * pos + 1;
968            while child < end {
969                let right = child + 1;
970                // compare with the greater of the two children
971                // if right < end && !(hole.get(child) > hole.get(right)) {
972                if right < end
973                    && self.cmp.compare(hole.get(child), hole.get(right)) != Ordering::Greater
974                {
975                    child = right;
976                }
977                hole.move_to(child);
978                child = 2 * hole.pos() + 1;
979            }
980            pos = hole.pos;
981        }
982        self.sift_up(start, pos);
983    }
984
985    /// Returns the length of the binary heap.
986    ///
987    /// # Examples
988    ///
989    /// Basic usage:
990    ///
991    /// ```
992    /// use binary_heap_plus2::*;
993    /// let heap = BinaryHeap::from(vec![1, 3]);
994    ///
995    /// assert_eq!(heap.len(), 2);
996    /// ```
997    // #[stable(feature = "rust1", since = "1.0.0")]
998    pub fn len(&self) -> usize {
999        self.data.len()
1000    }
1001
1002    /// Checks if the binary heap is empty.
1003    ///
1004    /// # Examples
1005    ///
1006    /// Basic usage:
1007    ///
1008    /// ```
1009    /// use binary_heap_plus2::*;
1010    /// let mut heap = BinaryHeap::new();
1011    ///
1012    /// assert!(heap.is_empty());
1013    ///
1014    /// heap.push(3);
1015    /// heap.push(5);
1016    /// heap.push(1);
1017    ///
1018    /// assert!(!heap.is_empty());
1019    /// ```
1020    // #[stable(feature = "rust1", since = "1.0.0")]
1021    pub fn is_empty(&self) -> bool {
1022        self.len() == 0
1023    }
1024
1025    /// Clears the binary heap, returning an iterator over the removed elements.
1026    ///
1027    /// The elements are removed in arbitrary order.
1028    ///
1029    /// # Examples
1030    ///
1031    /// Basic usage:
1032    ///
1033    /// ```
1034    /// use binary_heap_plus2::*;
1035    /// let mut heap = BinaryHeap::from(vec![1, 3]);
1036    ///
1037    /// assert!(!heap.is_empty());
1038    ///
1039    /// for x in heap.drain() {
1040    ///     println!("{}", x);
1041    /// }
1042    ///
1043    /// assert!(heap.is_empty());
1044    /// ```
1045    #[inline]
1046    // #[stable(feature = "drain", since = "1.6.0")]
1047    pub fn drain(&mut self) -> Drain<T> {
1048        Drain {
1049            iter: self.data.drain(..),
1050        }
1051    }
1052
1053    /// Drops all items from the binary heap.
1054    ///
1055    /// # Examples
1056    ///
1057    /// Basic usage:
1058    ///
1059    /// ```
1060    /// use binary_heap_plus2::*;
1061    /// let mut heap = BinaryHeap::from(vec![1, 3]);
1062    ///
1063    /// assert!(!heap.is_empty());
1064    ///
1065    /// heap.clear();
1066    ///
1067    /// assert!(heap.is_empty());
1068    /// ```
1069    // #[stable(feature = "rust1", since = "1.0.0")]
1070    pub fn clear(&mut self) {
1071        self.drain();
1072    }
1073
1074    fn rebuild(&mut self) {
1075        let mut n = self.len() / 2;
1076        while n > 0 {
1077            n -= 1;
1078            self.sift_down(n);
1079        }
1080    }
1081
1082    /// Moves all the elements of `other` into `self`, leaving `other` empty.
1083    ///
1084    /// # Examples
1085    ///
1086    /// Basic usage:
1087    ///
1088    /// ```
1089    /// use binary_heap_plus2::*;
1090    ///
1091    /// let v = vec![-10, 1, 2, 3, 3];
1092    /// let mut a = BinaryHeap::from(v);
1093    ///
1094    /// let v = vec![-20, 5, 43];
1095    /// let mut b = BinaryHeap::from(v);
1096    ///
1097    /// a.append(&mut b);
1098    ///
1099    /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
1100    /// assert!(b.is_empty());
1101    /// ```
1102    // #[stable(feature = "binary_heap_append", since = "1.11.0")]
1103    pub fn append(&mut self, other: &mut Self) {
1104        if self.len() < other.len() {
1105            swap(self, other);
1106        }
1107
1108        if other.is_empty() {
1109            return;
1110        }
1111
1112        #[inline(always)]
1113        fn log2_fast(x: usize) -> usize {
1114            8 * size_of::<usize>() - (x.leading_zeros() as usize) - 1
1115        }
1116
1117        // `rebuild` takes O(len1 + len2) operations
1118        // and about 2 * (len1 + len2) comparisons in the worst case
1119        // while `extend` takes O(len2 * log_2(len1)) operations
1120        // and about 1 * len2 * log_2(len1) comparisons in the worst case,
1121        // assuming len1 >= len2.
1122        #[inline]
1123        fn better_to_rebuild(len1: usize, len2: usize) -> bool {
1124            2 * (len1 + len2) < len2 * log2_fast(len1)
1125        }
1126
1127        if better_to_rebuild(self.len(), other.len()) {
1128            self.data.append(&mut other.data);
1129            self.rebuild();
1130        } else {
1131            self.extend(other.drain());
1132        }
1133    }
1134}
1135
1136/// Hole represents a hole in a slice i.e. an index without valid value
1137/// (because it was moved from or duplicated).
1138/// In drop, `Hole` will restore the slice by filling the hole
1139/// position with the value that was originally removed.
1140struct Hole<'a, T: 'a> {
1141    data: &'a mut [T],
1142    /// `elt` is always `Some` from new until drop.
1143    elt: Option<T>,
1144    pos: usize,
1145}
1146
1147impl<'a, T> Hole<'a, T> {
1148    /// Create a new Hole at index `pos`.
1149    ///
1150    /// Unsafe because pos must be within the data slice.
1151    #[inline]
1152    unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
1153        debug_assert!(pos < data.len());
1154        let elt = ptr::read(&data[pos]);
1155        Hole {
1156            data,
1157            elt: Some(elt),
1158            pos,
1159        }
1160    }
1161
1162    #[inline]
1163    fn pos(&self) -> usize {
1164        self.pos
1165    }
1166
1167    /// Returns a reference to the element removed.
1168    #[inline]
1169    fn element(&self) -> &T {
1170        self.elt.as_ref().unwrap()
1171    }
1172
1173    /// Returns a reference to the element at `index`.
1174    ///
1175    /// Unsafe because index must be within the data slice and not equal to pos.
1176    #[inline]
1177    unsafe fn get(&self, index: usize) -> &T {
1178        debug_assert!(index != self.pos);
1179        debug_assert!(index < self.data.len());
1180        self.data.get_unchecked(index)
1181    }
1182
1183    /// Move hole to new location
1184    ///
1185    /// Unsafe because index must be within the data slice and not equal to pos.
1186    #[inline]
1187    unsafe fn move_to(&mut self, index: usize) {
1188        debug_assert!(index != self.pos);
1189        debug_assert!(index < self.data.len());
1190        let index_ptr: *const _ = self.data.get_unchecked(index);
1191        let hole_ptr = self.data.get_unchecked_mut(self.pos);
1192        ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
1193        self.pos = index;
1194    }
1195}
1196
1197impl<'a, T> Drop for Hole<'a, T> {
1198    #[inline]
1199    fn drop(&mut self) {
1200        // fill the hole again
1201        unsafe {
1202            let pos = self.pos;
1203            ptr::write(self.data.get_unchecked_mut(pos), self.elt.take().unwrap());
1204        }
1205    }
1206}
1207
1208/// An iterator over the elements of a `BinaryHeap`.
1209///
1210/// This `struct` is created by the [`iter`] method on [`BinaryHeap`]. See its
1211/// documentation for more.
1212///
1213/// [`iter`]: struct.BinaryHeap.html#method.iter
1214/// [`BinaryHeap`]: struct.BinaryHeap.html
1215// #[stable(feature = "rust1", since = "1.0.0")]
1216pub struct Iter<'a, T: 'a> {
1217    iter: slice::Iter<'a, T>,
1218}
1219
1220// #[stable(feature = "collection_debug", since = "1.17.0")]
1221impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> {
1222    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1223        f.debug_tuple("Iter").field(&self.iter.as_slice()).finish()
1224    }
1225}
1226
1227// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
1228// #[stable(feature = "rust1", since = "1.0.0")]
1229impl<'a, T> Clone for Iter<'a, T> {
1230    fn clone(&self) -> Iter<'a, T> {
1231        Iter {
1232            iter: self.iter.clone(),
1233        }
1234    }
1235}
1236
1237// #[stable(feature = "rust1", since = "1.0.0")]
1238impl<'a, T> Iterator for Iter<'a, T> {
1239    type Item = &'a T;
1240
1241    #[inline]
1242    fn next(&mut self) -> Option<&'a T> {
1243        self.iter.next()
1244    }
1245
1246    #[inline]
1247    fn size_hint(&self) -> (usize, Option<usize>) {
1248        self.iter.size_hint()
1249    }
1250}
1251
1252// #[stable(feature = "rust1", since = "1.0.0")]
1253impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1254    #[inline]
1255    fn next_back(&mut self) -> Option<&'a T> {
1256        self.iter.next_back()
1257    }
1258}
1259
1260// #[stable(feature = "rust1", since = "1.0.0")]
1261// impl<'a, T> ExactSizeIterator for Iter<'a, T> {
1262//     fn is_empty(&self) -> bool {
1263//         self.iter.is_empty()
1264//     }
1265// }
1266
1267// #[stable(feature = "fused", since = "1.26.0")]
1268// impl<'a, T> FusedIterator for Iter<'a, T> {}
1269
1270/// An owning iterator over the elements of a `BinaryHeap`.
1271///
1272/// This `struct` is created by the [`into_iter`] method on [`BinaryHeap`][`BinaryHeap`]
1273/// (provided by the `IntoIterator` trait). See its documentation for more.
1274///
1275/// [`into_iter`]: struct.BinaryHeap.html#method.into_iter
1276/// [`BinaryHeap`]: struct.BinaryHeap.html
1277// #[stable(feature = "rust1", since = "1.0.0")]
1278#[derive(Clone)]
1279pub struct IntoIter<T> {
1280    iter: vec::IntoIter<T>,
1281}
1282
1283// #[stable(feature = "collection_debug", since = "1.17.0")]
1284impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
1285    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1286        f.debug_tuple("IntoIter")
1287            .field(&self.iter.as_slice())
1288            .finish()
1289    }
1290}
1291
1292// #[stable(feature = "rust1", since = "1.0.0")]
1293impl<T> Iterator for IntoIter<T> {
1294    type Item = T;
1295
1296    #[inline]
1297    fn next(&mut self) -> Option<T> {
1298        self.iter.next()
1299    }
1300
1301    #[inline]
1302    fn size_hint(&self) -> (usize, Option<usize>) {
1303        self.iter.size_hint()
1304    }
1305}
1306
1307// #[stable(feature = "rust1", since = "1.0.0")]
1308impl<T> DoubleEndedIterator for IntoIter<T> {
1309    #[inline]
1310    fn next_back(&mut self) -> Option<T> {
1311        self.iter.next_back()
1312    }
1313}
1314
1315// #[stable(feature = "rust1", since = "1.0.0")]
1316// impl<T> ExactSizeIterator for IntoIter<T> {
1317//     fn is_empty(&self) -> bool {
1318//         self.iter.is_empty()
1319//     }
1320// }
1321
1322// #[stable(feature = "fused", since = "1.26.0")]
1323// impl<T> FusedIterator for IntoIter<T> {}
1324
1325// #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1326#[derive(Clone, Debug)]
1327pub struct IntoIterSorted<T, C: Compare<T>> {
1328    inner: BinaryHeap<T, C>,
1329}
1330
1331// #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
1332impl<T, C: Compare<T>> Iterator for IntoIterSorted<T, C> {
1333    type Item = T;
1334
1335    #[inline]
1336    fn next(&mut self) -> Option<T> {
1337        self.inner.pop()
1338    }
1339
1340    #[inline]
1341    fn size_hint(&self) -> (usize, Option<usize>) {
1342        let exact = self.inner.len();
1343        (exact, Some(exact))
1344    }
1345}
1346
1347/// A draining iterator over the elements of a `BinaryHeap`.
1348///
1349/// This `struct` is created by the [`drain`] method on [`BinaryHeap`]. See its
1350/// documentation for more.
1351///
1352/// [`drain`]: struct.BinaryHeap.html#method.drain
1353/// [`BinaryHeap`]: struct.BinaryHeap.html
1354// #[stable(feature = "drain", since = "1.6.0")]
1355// #[derive(Debug)]
1356pub struct Drain<'a, T: 'a> {
1357    iter: vec::Drain<'a, T>,
1358}
1359
1360// #[stable(feature = "drain", since = "1.6.0")]
1361impl<'a, T: 'a> Iterator for Drain<'a, T> {
1362    type Item = T;
1363
1364    #[inline]
1365    fn next(&mut self) -> Option<T> {
1366        self.iter.next()
1367    }
1368
1369    #[inline]
1370    fn size_hint(&self) -> (usize, Option<usize>) {
1371        self.iter.size_hint()
1372    }
1373}
1374
1375// #[stable(feature = "drain", since = "1.6.0")]
1376impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> {
1377    #[inline]
1378    fn next_back(&mut self) -> Option<T> {
1379        self.iter.next_back()
1380    }
1381}
1382
1383// #[stable(feature = "drain", since = "1.6.0")]
1384// impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {
1385//     fn is_empty(&self) -> bool {
1386//         self.iter.is_empty()
1387//     }
1388// }
1389
1390// #[stable(feature = "fused", since = "1.26.0")]
1391// impl<'a, T: 'a> FusedIterator for Drain<'a, T> {}
1392
1393// #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1394impl<T: Ord> From<Vec<T>> for BinaryHeap<T> {
1395    /// creates a max heap from a vec
1396    fn from(vec: Vec<T>) -> Self {
1397        BinaryHeap::from_vec(vec)
1398    }
1399}
1400
1401// #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1402// impl<T, C: Compare<T>> From<BinaryHeap<T, C>> for Vec<T> {
1403//     fn from(heap: BinaryHeap<T, C>) -> Vec<T> {
1404//         heap.data
1405//     }
1406// }
1407
1408impl<T, C: Compare<T>> Into<Vec<T>> for BinaryHeap<T, C> {
1409    fn into(self) -> Vec<T> {
1410        self.data
1411    }
1412}
1413
1414// #[stable(feature = "rust1", since = "1.0.0")]
1415impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
1416    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
1417        BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
1418    }
1419}
1420
1421// #[stable(feature = "rust1", since = "1.0.0")]
1422impl<T, C: Compare<T>> IntoIterator for BinaryHeap<T, C> {
1423    type Item = T;
1424    type IntoIter = IntoIter<T>;
1425
1426    /// Creates a consuming iterator, that is, one that moves each value out of
1427    /// the binary heap in arbitrary order. The binary heap cannot be used
1428    /// after calling this.
1429    ///
1430    /// # Examples
1431    ///
1432    /// Basic usage:
1433    ///
1434    /// ```
1435    /// use binary_heap_plus2::*;
1436    /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
1437    ///
1438    /// // Print 1, 2, 3, 4 in arbitrary order
1439    /// for x in heap.into_iter() {
1440    ///     // x has type i32, not &i32
1441    ///     println!("{}", x);
1442    /// }
1443    /// ```
1444    fn into_iter(self) -> IntoIter<T> {
1445        IntoIter {
1446            iter: self.data.into_iter(),
1447        }
1448    }
1449}
1450
1451// #[stable(feature = "rust1", since = "1.0.0")]
1452impl<'a, T, C: Compare<T>> IntoIterator for &'a BinaryHeap<T, C> {
1453    type Item = &'a T;
1454    type IntoIter = Iter<'a, T>;
1455
1456    fn into_iter(self) -> Iter<'a, T> {
1457        self.iter()
1458    }
1459}
1460
1461// #[stable(feature = "rust1", since = "1.0.0")]
1462impl<T, C: Compare<T>> Extend<T> for BinaryHeap<T, C> {
1463    #[inline]
1464    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1465        // <Self as SpecExtend<I>>::spec_extend(self, iter);
1466        self.extend_desugared(iter);
1467    }
1468}
1469
1470// impl<T, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> {
1471//     default fn spec_extend(&mut self, iter: I) {
1472//         self.extend_desugared(iter.into_iter());
1473//     }
1474// }
1475
1476// impl<T> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> {
1477//     fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) {
1478//         self.append(other);
1479//     }
1480// }
1481
1482impl<T, C: Compare<T>> BinaryHeap<T, C> {
1483    fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1484        let iterator = iter.into_iter();
1485        let (lower, _) = iterator.size_hint();
1486
1487        self.reserve(lower);
1488
1489        for elem in iterator {
1490            self.push(elem);
1491        }
1492    }
1493}
1494
1495// #[stable(feature = "extend_ref", since = "1.2.0")]
1496impl<'a, T: 'a + Copy, C: Compare<T>> Extend<&'a T> for BinaryHeap<T, C> {
1497    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
1498        self.extend(iter.into_iter().cloned());
1499    }
1500}
1501
1502// #[unstable(feature = "collection_placement",
1503//            reason = "placement protocol is subject to change",
1504//            issue = "30172")]
1505// pub struct BinaryHeapPlace<'a, T: 'a>
1506// where T: Clone {
1507//     heap: *mut BinaryHeap<T>,
1508//     place: vec::PlaceBack<'a, T>,
1509// }
1510
1511// #[unstable(feature = "collection_placement",
1512//            reason = "placement protocol is subject to change",
1513//            issue = "30172")]
1514// impl<'a, T: Clone + Ord + fmt::Debug> fmt::Debug for BinaryHeapPlace<'a, T> {
1515//     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1516//         f.debug_tuple("BinaryHeapPlace")
1517//          .field(&self.place)
1518//          .finish()
1519//     }
1520// }
1521
1522// #[unstable(feature = "collection_placement",
1523//            reason = "placement protocol is subject to change",
1524//            issue = "30172")]
1525// impl<'a, T: 'a> Placer<T> for &'a mut BinaryHeap<T>
1526// where T: Clone + Ord {
1527//     type Place = BinaryHeapPlace<'a, T>;
1528
1529//     fn make_place(self) -> Self::Place {
1530//         let ptr = self as *mut BinaryHeap<T>;
1531//         let place = Placer::make_place(self.data.place_back());
1532//         BinaryHeapPlace {
1533//             heap: ptr,
1534//             place,
1535//         }
1536//     }
1537// }
1538
1539// #[unstable(feature = "collection_placement",
1540//            reason = "placement protocol is subject to change",
1541//            issue = "30172")]
1542// unsafe impl<'a, T> Place<T> for BinaryHeapPlace<'a, T>
1543// where T: Clone + Ord {
1544//     fn pointer(&mut self) -> *mut T {
1545//         self.place.pointer()
1546//     }
1547// }
1548
1549// #[unstable(feature = "collection_placement",
1550//            reason = "placement protocol is subject to change",
1551//            issue = "30172")]
1552// impl<'a, T> InPlace<T> for BinaryHeapPlace<'a, T>
1553// where T: Clone + Ord {
1554//     type Owner = &'a T;
1555
1556//     unsafe fn finalize(self) -> &'a T {
1557//         self.place.finalize();
1558
1559//         let heap: &mut BinaryHeap<T> = &mut *self.heap;
1560//         let len = heap.len();
1561//         let i = heap.sift_up(0, len - 1);
1562//         heap.data.get_unchecked(i)
1563//     }
1564// }