1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
mod face;
pub use face::*;
pub const CS: usize = 62;
const CS_2: usize = CS * CS;
pub const CS_P: usize = CS + 2;
pub const CS_P2: usize = CS_P * CS_P;
pub const CS_P3: usize = CS_P * CS_P * CS_P;
const P_MASK: u64 = !(1 << 63 | 1);


#[derive(Debug)]
pub struct MeshData {
    // Input (CS_P2)
    pub opaque_mask: Box<[u64]>,
    // Output
    pub quads: [Vec<u64>; 6],
    // Internal buffers
    // (CS_2 * 6)
    face_masks: Box<[u64]>,
    // (CS_2)
    forward_merged: Box<[u8]>,
    // (CS)
    right_merged: Box<[u8]>,
}

impl MeshData {
    pub fn new() -> Self {
        Self { 
            face_masks: vec![0; CS_2*6].into_boxed_slice(), 
            opaque_mask: vec![0; CS_P2].into_boxed_slice(), 
            forward_merged: vec![0; CS_2].into_boxed_slice(), 
            right_merged: vec![0; CS].into_boxed_slice(), 
            quads: core::array::from_fn(|_| Vec::new()), 
        }
    }

    pub fn clear(&mut self) {
        self.face_masks.fill(0);
        self.opaque_mask.fill(0);
        self.forward_merged.fill(0);
        self.right_merged.fill(0);
        for i in 0..self.quads.len() {
            self.quads[i].clear();
        }
    }
}

// Passing &mut MeshData instead of returning MeshData allows the caller to reuse buffers
pub fn mesh(voxels: &[u16], mesh_data: &mut MeshData) {
    let opaque_mask = &mut mesh_data.opaque_mask;
    let face_masks = &mut mesh_data.face_masks;
    let forward_merged = &mut mesh_data.forward_merged;
    let right_merged = &mut mesh_data.right_merged;

    // Hidden face culling
    for a in 1..(CS_P-1) {
        let a_cs_p = a * CS_P;

        for b in 1..(CS_P-1) {
            let op_index = a_cs_p + b;
            let column_bits = opaque_mask[op_index] & P_MASK;
            let ba_index = (b - 1) + (a - 1) * CS;
            let ab_index = (a - 1) + (b - 1) * CS;

            face_masks[ba_index + 0 * CS_2] = (column_bits & !opaque_mask[op_index + CS_P]) >> 1;
            face_masks[ba_index + 1 * CS_2] = (column_bits & !opaque_mask[op_index - CS_P]) >> 1;

            face_masks[ab_index + 2 * CS_2] = (column_bits & !opaque_mask[op_index + 1]) >> 1;
            face_masks[ab_index + 3 * CS_2] = (column_bits & !opaque_mask[op_index - 1]) >> 1;

            face_masks[ba_index + 4 * CS_2] = column_bits & !(opaque_mask[op_index] >> 1);
            face_masks[ba_index + 5 * CS_2] = column_bits & !(opaque_mask[op_index] << 1);
        }
    }

    // Greedy meshing faces 0-3
    for face in 0..=3 {
        let axis = face / 2;

        for layer in 0..CS {
            let bits_location = layer * CS + face * CS_2;

            for forward in 0..CS {
                let mut bits_here = face_masks[forward + bits_location];
                if bits_here == 0 { continue; }

                let bits_next = if forward + 1 < CS {
                    face_masks[(forward + 1) + bits_location]
                } else {
                    0
                };

                let mut right_merged = 1;
                while bits_here != 0 {
                    let bit_pos = bits_here.trailing_zeros() as usize;

                    let v_type = voxels[get_axis_index(axis, forward + 1, bit_pos + 1, layer + 1)];

                    if (bits_next >> bit_pos & 1) != 0 && v_type == voxels[get_axis_index(axis, forward + 2, bit_pos + 1, layer + 1)] {
                        forward_merged[bit_pos] += 1;
                        bits_here &= !(1 << bit_pos);
                        continue;
                    }

                    for right in (bit_pos+1)..CS {
                        if (bits_here >> right & 1) == 0 
                            || forward_merged[bit_pos]  != forward_merged[right] 
                            || v_type != voxels[get_axis_index(axis, forward + 1, right + 1, layer + 1)] 
                        {
                            break;
                        }
                        forward_merged[right] = 0;
                        right_merged += 1;
                    }
                    bits_here &= !((1 << (bit_pos + right_merged)) - 1);

                    let mesh_front = forward - forward_merged[bit_pos] as usize;
                    let mesh_left = bit_pos;
                    let mesh_up = layer + (!face & 1);

                    let mesh_width = right_merged;
                    let mesh_length = (forward_merged[bit_pos] + 1) as usize;

                    forward_merged[bit_pos] = 0;
                    right_merged = 1;

                    let v_type = v_type as usize;

                    let quad = match face {
                        0 => get_quad(mesh_front, mesh_up, mesh_left, mesh_length, mesh_width, v_type),
                        1 => get_quad(mesh_front + mesh_length as usize, mesh_up, mesh_left, mesh_length, mesh_width, v_type),
                        2 => get_quad(mesh_up, mesh_front + mesh_length as usize, mesh_left, mesh_length, mesh_width, v_type),
                        3 => get_quad(mesh_up, mesh_front, mesh_left, mesh_length, mesh_width, v_type),
                        _ => unreachable!()
                    };
                    mesh_data.quads[face].push(quad);
                }
            }
        }
    }

    // Greedy meshing faces 4-5
    for face in 4..6 {
        let axis = face / 2;

        for forward in 0..CS {
            let bits_location = forward * CS + face * CS_2;
            let bits_forward_location = (forward + 1) * CS + face * CS_2;

            for right in 0..CS {
                let mut bits_here = face_masks[right + bits_location];
                if bits_here == 0 {
                    continue;
                }
                
                let bits_forward = if forward < CS - 1 { face_masks[right + bits_forward_location] } else { 0 };
                let bits_right = if right < CS - 1 { face_masks[right + 1 + bits_location] } else { 0 };
                let right_cs = right * CS;

                while bits_here != 0 {
                    let bit_pos = bits_here.trailing_zeros() as usize;

                    bits_here &= !(1 << bit_pos);

                    let v_type = voxels[get_axis_index(axis, right + 1, forward + 1, bit_pos)];
                    let forward_merge_i = right_cs + (bit_pos - 1);
                    let right_merged_ref = &mut right_merged[bit_pos - 1];

                    if *right_merged_ref == 0 && (bits_forward >> bit_pos & 1) != 0 && v_type == voxels[get_axis_index(axis, right + 1, forward + 2, bit_pos)] {
                        forward_merged[forward_merge_i] += 1;
                        continue;
                    }

                    if (bits_right >> bit_pos & 1) != 0 
                        && forward_merged[forward_merge_i] == forward_merged[(right_cs + CS) + (bit_pos - 1)] 
                        && v_type == voxels[get_axis_index(axis, right + 2, forward + 1, bit_pos)] 
                    {
                        forward_merged[forward_merge_i] = 0;
                        *right_merged_ref += 1;
                        continue;
                    }

                    let mesh_left = right - *right_merged_ref as usize;
                    let mesh_front = forward - forward_merged[forward_merge_i] as usize;
                    let mesh_up = bit_pos - 1 + (!face & 1);

                    let mesh_width = 1 + *right_merged_ref;
                    let mesh_length = 1 + forward_merged[forward_merge_i];

                    forward_merged[forward_merge_i] = 0;
                    *right_merged_ref = 0;

                    let quad = get_quad(
                        mesh_left + (if face == 4 { mesh_width } else { 0 }) as usize, 
                        mesh_front, 
                        mesh_up, 
                        mesh_width as usize, 
                        mesh_length as usize, 
                        v_type as usize
                    );
                    mesh_data.quads[face].push(quad);
                }
            }
        }
    }
}

#[inline]
fn get_axis_index(axis: usize, a: usize, b: usize, c: usize) -> usize {
    // TODO: figure out how to shuffle this around to make it work with YZX
    match axis {
        0 => b + (a * CS_P) + (c * CS_P2),
        1 => b + (c * CS_P) + (a * CS_P2),
        _ => c + (a * CS_P) + (b * CS_P2)
    }
}

#[inline]
fn get_quad(x: usize, y: usize, z: usize, w: usize, h: usize, v_type: usize) -> u64 {
    ((v_type << 32) | (h << 24) | (w << 18) | (z << 12) | (y << 6) | x) as u64
}


pub fn indices(num_quads: usize) -> Vec<u32> {
    // Each quads is made of 2 triangles which require 6 indices
    // The indices are the same regardless of the face
    let mut res = Vec::with_capacity(num_quads*6);
    for i in 0..num_quads as u32 {
        res.push((i << 2) | 2);
        res.push((i << 2) | 0);
        res.push((i << 2) | 1);
        res.push((i << 2) | 1);
        res.push((i << 2) | 3);
        res.push((i << 2) | 2);
    }
    res
}

pub fn pad_linearize(x: usize, y: usize, z: usize) -> usize {
    z + 1 + (x + 1)*CS_P + (y + 1)*CS_P2
}

#[cfg(test)]
mod tests {
    use crate as bgm;
    const MASK6: u64 = 0b111_111;

    #[derive(Debug)]
    struct Quad {
        x: u64,
        y: u64,
        z: u64,
        w: u64,
        h: u64,
        v_type: u64
    }

    impl From<u64> for Quad {
        fn from(value: u64) -> Self {
            Self {
                x: value & MASK6,
                y: (value >> 6) & MASK6,
                z: (value >> 12) & MASK6,
                w: (value >> 18) & MASK6,
                h: (value >> 24) & MASK6,
                v_type: value >> 32,
            }
        }
    }
    
    #[test]
    fn doesnt_crash() {
        let mut voxels = [0; bgm::CS_P3];
        voxels[bgm::pad_linearize(0, 0, 0)] = 1;
        voxels[bgm::pad_linearize(0, 1, 0)] = 1;
    
        let mut mesh_data = bgm::MeshData::new();
        // Fill the opacity mask
        for (i, voxel) in voxels.iter().enumerate() {
            // If the voxel is transparent we skip it
            if *voxel == 0 {
                continue;
            }
            let (r, q) = (i/bgm::CS_P, i%bgm::CS_P);
            mesh_data.opaque_mask[r] |= 1 << q;
        }
        bgm::mesh(&voxels, &mut mesh_data);
        // mesh_data.quads is the output
        for (i, quads) in mesh_data.quads.iter().enumerate() {
            println!("--- Face {i} ---");
            for quad in quads {
                println!("{:?}", Quad::from(*quad));
            }
        }
    }
}