1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
const CS: usize = 62;
const CS_P: usize = CS + 2;
const CS_2: usize = CS * CS;
const CS_P2: usize = CS_P * CS_P;
const P_MASK: u64 = !(1 << 63 | 1);

#[derive(Debug)]
pub struct MeshData {
    // CS_2 * 6
    face_masks: Box<[u64]>,
    // CS_P2
    pub opaque_mask: Box<[u64]>,
    // CS_2
    forward_merged: Box<[u8]>,
    // CS
    right_merged: Box<[u8]>,
    pub quads: Vec<u64>,
    face_vertex_begin: [usize; 6],
    face_vertex_length: [usize; 6],
}

impl MeshData {
    pub fn new(chunk_size: usize) -> Self {
        let chunk_size_2 = chunk_size * chunk_size;
        let chunk_size_padded = chunk_size + 2;
        let chunk_size_padded2 = chunk_size_padded*chunk_size_padded;
        Self { 
            face_masks: vec![0; chunk_size_2*6].into_boxed_slice(), 
            opaque_mask: vec![0; chunk_size_padded2].into_boxed_slice(), 
            forward_merged: vec![0; chunk_size_2].into_boxed_slice(), 
            right_merged: vec![0; chunk_size].into_boxed_slice(), 
            quads: Vec::new(), 
            face_vertex_begin: [0; 6], 
            face_vertex_length: [0; 6] 
        }
    }

    pub fn clear(&mut self) {
        self.face_masks.fill(0);
        self.opaque_mask.fill(0);
        self.forward_merged.fill(0);
        self.right_merged.fill(0);
        self.face_vertex_begin.fill(0);
        self.face_vertex_length.fill(0);
        self.quads.clear();
    }
}

// Passing &mut MeshData instead of returning MeshData allows the caller to reuse buffers
pub fn mesh(voxels: &[u16], mesh_data: &mut MeshData) {
    let opaque_mask = &mut mesh_data.opaque_mask;
    let face_masks = &mut mesh_data.face_masks;
    let forward_merged = &mut mesh_data.forward_merged;
    let right_merged = &mut mesh_data.right_merged;

    // Hidden face culling
    for a in 1..(CS_P-1) {
        let a_cs_p = a * CS_P;

        for b in 1..(CS_P-1) {
            let column_bits = opaque_mask[(a * CS_P) + b] & P_MASK;
            let ba_index = (b - 1) + (a - 1) * CS;
            let ab_index = (a - 1) + (b - 1) * CS;

            face_masks[ba_index + 0 * CS_2] = (column_bits & !opaque_mask[a_cs_p + CS_P + b]) >> 1;
            face_masks[ba_index + 1 * CS_2] = (column_bits & !opaque_mask[a_cs_p - CS_P + b]) >> 1;

            face_masks[ab_index + 2 * CS_2] = (column_bits & !opaque_mask[a_cs_p + (b + 1)]) >> 1;
            face_masks[ab_index + 3 * CS_2] = (column_bits & !opaque_mask[a_cs_p + (b - 1)]) >> 1;

            face_masks[ba_index + 4 * CS_2] = column_bits & !(opaque_mask[a_cs_p + b] >> 1);
            face_masks[ba_index + 5 * CS_2] = column_bits & !(opaque_mask[a_cs_p + b] << 1);
        }
    }

    // Greedy meshing faces 0-3
    for face in 0..=3 {
        let axis = face / 2;

        let face_vertex_begin = mesh_data.quads.len();

        for layer in 0..CS {
            let bits_location = layer * CS + face * CS_2;

            for forward in 0..CS {
                let mut bits_here = face_masks[forward + bits_location];
                if bits_here == 0 { continue; }

                let bits_next = if forward + 1 < CS {
                    face_masks[(forward + 1) + bits_location]
                } else {
                    0
                };

                let mut right_merged = 1;
                while bits_here != 0 {
                    let bit_pos = bits_here.trailing_zeros() as usize;

                    let v_type = voxels[get_axis_index(axis, forward + 1, bit_pos + 1, layer + 1)];

                    if (bits_next >> bit_pos & 1) != 0 && v_type == voxels[get_axis_index(axis, forward + 2, bit_pos + 1, layer + 1)] {
                        forward_merged[bit_pos] += 1;
                        bits_here &= !(1 << bit_pos);
                        continue;
                    }

                    for right in (bit_pos+1)..CS {
                        if (bits_here >> right & 1) == 0 
                            || forward_merged[bit_pos]  != forward_merged[right] 
                            || v_type != voxels[get_axis_index(axis, forward + 1, right + 1, layer + 1)] 
                        {
                            break;
                        }
                        forward_merged[right] = 0;
                        right_merged += 1;
                    }
                    bits_here &= !((1 << (bit_pos + right_merged)) - 1);

                    let mesh_front = forward - forward_merged[bit_pos] as usize;
                    let mesh_left = bit_pos;
                    let mesh_up = layer + (!face & 1);

                    let mesh_width = right_merged;
                    let mesh_length = (forward_merged[bit_pos] + 1) as usize;

                    forward_merged[bit_pos] = 0;
                    right_merged = 1;

                    let v_type = v_type as usize;

                    let quad = match face {
                        0 => get_quad(mesh_front, mesh_up, mesh_left, mesh_length, mesh_width, v_type),
                        1 => get_quad(mesh_front + mesh_length as usize, mesh_up, mesh_left, mesh_length, mesh_width, v_type),
                        2 => get_quad(mesh_up, mesh_front + mesh_length as usize, mesh_left, mesh_length, mesh_width, v_type),
                        3 => get_quad(mesh_up, mesh_front, mesh_left, mesh_length, mesh_width, v_type),
                        _ => unreachable!()
                    };
                    mesh_data.quads.push(quad);
                }
            }
        }

        let face_vertex_length = mesh_data.quads.len() - face_vertex_begin;
        mesh_data.face_vertex_begin[face] = face_vertex_begin;
        mesh_data.face_vertex_length[face] =face_vertex_length;
    }

    // Greedy meshing faces 4-5
    for face in 4..6 {
        let axis = face / 2;

        let face_vertex_begin = mesh_data.quads.len();

        for forward in 0..CS {
            let bits_location = forward * CS + face * CS_2;
            let bits_forward_location = (forward + 1) * CS + face * CS_2;

            for right in 0..CS {
                let mut bits_here = face_masks[right + bits_location];
                if bits_here == 0 {
                    continue;
                }
                
                let bits_forward = if forward < CS - 1 { face_masks[right + bits_forward_location] } else { 0 };
                let bits_right = if right < CS - 1 { face_masks[right + 1 + bits_location] } else { 0 };
                let right_cs = right * CS;

                while bits_here != 0 {
                    let bit_pos = bits_here.trailing_zeros() as usize;

                    bits_here &= !(1 << bit_pos);

                    let v_type = voxels[get_axis_index(axis, right + 1, forward + 1, bit_pos)];
                    let forward_merge_i = right_cs + (bit_pos - 1);
                    let right_merged_ref = &mut right_merged[bit_pos - 1];

                    if *right_merged_ref == 0 && (bits_forward >> bit_pos & 1) != 0 && v_type == voxels[get_axis_index(axis, right + 1, forward + 2, bit_pos)] {
                        forward_merged[forward_merge_i] += 1;
                        continue;
                    }

                    if (bits_right >> bit_pos & 1) != 0 
                        && forward_merged[forward_merge_i] == forward_merged[(right_cs + CS) + (bit_pos - 1)] 
                        && v_type == voxels[get_axis_index(axis, right + 2, forward + 1, bit_pos)] 
                    {
                        forward_merged[forward_merge_i] = 0;
                        *right_merged_ref += 1;
                        continue;
                    }

                    let mesh_left = right - *right_merged_ref as usize;
                    let mesh_front = forward - forward_merged[forward_merge_i] as usize;
                    let mesh_up = bit_pos - 1 + (!face & 1);

                    let mesh_width = 1 + *right_merged_ref;
                    let mesh_length = 1 + forward_merged[forward_merge_i];

                    forward_merged[forward_merge_i] = 0;
                    *right_merged_ref = 0;

                    let quad = get_quad(
                        mesh_left + (if face == 4 { mesh_width } else { 0 }) as usize, 
                        mesh_front, 
                        mesh_up, 
                        mesh_width as usize, 
                        mesh_length as usize, 
                        v_type as usize
                    );
                    mesh_data.quads.push(quad);
                }
            }
        }

        let face_vertex_length = mesh_data.quads.len() - face_vertex_begin;
        mesh_data.face_vertex_begin[face] = face_vertex_begin;
        mesh_data.face_vertex_length[face] = face_vertex_length;
    }
}

#[inline]
fn get_axis_index(axis: usize, a: usize, b: usize, c: usize) -> usize {
    match axis {
        0 => b + (a * CS_P) + (c * CS_P2),
        1 => b + (c * CS_P) + (a * CS_P2),
        _ => c + (a * CS_P) + (b * CS_P2)
    }
}

#[inline]
fn get_quad(x: usize, y: usize, z: usize, w: usize, h: usize, v_type: usize) -> u64 {
    ((v_type << 32) | (h << 24) | (w << 18) | (z << 12) | (y << 6) | x) as u64
}

#[cfg(test)]
mod tests {
    use crate::*;

    #[test]
    fn it_works() {
        let mut voxels: [u16; 262144] = [0; CS_P2*CS_P];
        voxels[CS_P2+CS_P+2] = 1;
        voxels[CS_P2+CS_P+3] = 1;
        let mut mesh_data = MeshData::new(CS);
        // Fill the opacity mask
        for (i, voxel) in voxels.iter().enumerate() {
            // If the voxel is transparent we skip it
            if *voxel == 0 {
                continue;
            }
            let (r, q) = (i/CS_P, i%CS_P);
            mesh_data.opaque_mask[r] |= 1 << q;
        }
        mesh(&voxels, &mut mesh_data);
        // Now mesh_data.quads is ready to be sent to the GPU
    }
}