1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
//! This module contains the main functions for decoding XBEN and BEN files.
//!
//! XBEN files are generally transformed back into BEN files, and BEN files
//! are transformed into a JSONL file with the formatting
//!
//! ```json
//! {"assignment": [...], "sample": #}
//! ```
//!
//! The BEN file format is a bit-packed binary format that is used to store
//! run-length encoded assignment vectors, and is streamable. Therefore, the
//! BEN file format works well with the `read` submodule of this module
//! which is designed to extract a single assignment vector from a BEN file.
pub mod read;
use byteorder::{BigEndian, ReadBytesExt};
use serde_json::json;
use std::io::{self, BufRead, Error, Read, Write};
use crate::utils::rle_to_vec;
use super::encode::translate::*;
use super::{log, logln};
/// This function takes a reader containing a single ben32 encoded assignment
/// vector and decodes it into a full assignment vector of u16s.
///
/// # Arguments
///
/// * `reader` - A reader containing the ben32 encoded assignment vector
///
/// # Returns
///
/// A vector of u16s containing the decoded assignment vector
///
/// # Errors
///
/// This function will return an error if the input reader is not a multiple of 4
/// bytes long since each assignment vector is an run-length encoded as a 32 bit
/// integer (2 bytes for the value and 2 bytes for the count).
///
fn decode_ben32_line<R: BufRead>(mut reader: R) -> io::Result<Vec<u16>> {
let mut buffer = [0u8; 4];
let mut output_vec: Vec<u16> = Vec::new();
loop {
// Read 4 bytes (u32) from the encoded file
// https://stackoverflow.com/questions/30412521/how-to-read-a-specific-number-of-bytes-from-a-stream
match reader.read_exact(&mut buffer) {
Ok(()) => {
let encoded = u32::from_be_bytes(buffer);
if encoded == 0 {
// Check for separator (all 0s)
break; // Exit loop to process next sample
}
let value = (encoded >> 16) as u16; // High 16 bits
let count = (encoded & 0xFFFF) as u16; // Low 16 bits
// Reconstruct the original data
for _ in 0..count {
output_vec.push(value);
}
}
Err(e) => {
return Err(e); // Propagate other errors
}
}
}
Ok(output_vec)
}
/// This function takes a reader containing a file encoded with the
/// "ben32" format and decodes it into a JSONL file.
///
/// The output JSONL file will have the formatting
///
/// ```json
/// {"assignment": [...], "sample": #}
/// ```
///
/// # Arguments
///
/// * `reader` - A reader containing the ben32 encoded assignment vectors
/// * `writer` - A writer that will contain the JSONL formatted assignment vectors
///
/// # Returns
///
/// An io::Result containing the result of the operation
///
/// # Errors
///
/// This function will return an error if the input reader contains invalid ben32
/// data or if the the decode method encounters while trying to extract a single
/// assignment vector, that error is propagated.
fn jsonl_decode_ben32<R: BufRead, W: Write>(mut reader: R, mut writer: W) -> io::Result<()> {
let mut sample_number = 1;
let mut check_buffer = [0u8; 17];
reader.read_exact(&mut check_buffer)?;
if &check_buffer != b"STANDARD BEN FILE" {
return Err(io::Error::new(
io::ErrorKind::InvalidData,
"Invalid file format",
));
}
loop {
let output_vec = decode_ben32_line(&mut reader);
if let Err(e) = output_vec {
if e.kind() == io::ErrorKind::UnexpectedEof {
return Ok(());
}
return Err(e);
}
// Write the reconstructed vector as JSON to the output file
let line = json!({
"assignment": output_vec.unwrap(),
"sample": sample_number,
})
.to_string()
+ "\n";
writer.write_all(line.as_bytes())?;
sample_number += 1;
}
}
/// This function takes a reader containing a file encoded in the XBEN format
/// and decodes it into a BEN file.
///
/// # Arguments
///
/// * `reader` - A reader containing the xben encoded assignment vectors
/// * `writer` - A writer that will contain the BEN formatted assignment vectors
///
/// # Returns
///
/// An io::Result containing the result of the operation
///
/// # Errors
///
/// This function will return an error if the input reader contains invalid xben
/// data or if the the decode method encounters while trying to convert the
/// xben data to ben data.
pub fn decode_xben_to_ben<R: BufRead, W: Write>(reader: R, mut writer: W) -> io::Result<()> {
let mut decoder = xz2::read::XzDecoder::new(reader);
let mut first_buffer = [0u8; 17];
match decoder.read(&mut first_buffer) {
Ok(_) => {
if &first_buffer[..17] != b"STANDARD BEN FILE" {
return Err(Error::new(
io::ErrorKind::InvalidData,
"Invalid file format",
));
}
writer.write_all(b"STANDARD BEN FILE")?;
}
Err(e) => {
return Err(e);
}
}
let mut buffer = [0u8; 1048576]; // 1MB buffer
let mut overflow: Vec<u8> = Vec::new();
let mut line_count: usize = 0;
while let Ok(count) = decoder.read(&mut buffer) {
if count == 0 {
break;
}
overflow.extend(&buffer[..count]);
let mut last_valid_assignment = 0;
// It is technically faster to read backwards from the last
// multiple of 4 smaller than the length of the overflow buffer
// but this provides only a minute speedup in almost all cases (maybe a
// few seconds). Reading form the front is both safer from a
// maintenance perspective and allows for a better progress indicator
for i in (3..overflow.len()).step_by(4) {
if overflow[i - 3..=i] == [0, 0, 0, 0] {
last_valid_assignment = i + 1;
line_count += 1;
log!("Decoding sample: {}\r", line_count);
}
}
if last_valid_assignment == 0 {
continue;
}
ben32_to_ben_lines(&overflow[0..last_valid_assignment], &mut writer)?;
overflow = overflow[last_valid_assignment..].to_vec();
}
logln!();
logln!("Done!");
Ok(())
}
/// This is a convenience function that decodes a general level 9 LZMA2 compressed file.
///
/// # Arguments
///
/// * `reader` - A reader containing the LZMA2 compressed data
/// * `writer` - A writer that will contain the decompressed data
///
/// # Returns
///
/// An io::Result containing the result of the operation
///
/// ```
/// use ben::encode::xz_compress;
/// use ben::decode::xz_decompress;
/// use lipsum::lipsum;
/// use std::io::{BufReader, BufWriter};
///
/// let input = lipsum(100);
/// let reader = BufReader::new(input.as_bytes());
/// let mut output_buffer = Vec::new();
/// let writer = BufWriter::new(&mut output_buffer);
///
/// xz_compress(reader, writer).unwrap();
///
/// let mut recovery_buff = Vec::new();
/// let recovery_reader = BufWriter::new(&mut recovery_buff);
/// xz_decompress(output_buffer.as_slice(), recovery_reader).unwrap();
/// println!("{:?}", output_buffer);
/// ```
pub fn xz_decompress<R: BufRead, W: Write>(reader: R, mut writer: W) -> io::Result<()> {
let mut decoder = xz2::read::XzDecoder::new(reader);
let mut buffer = [0u8; 4096];
while let Ok(count) = decoder.read(&mut buffer) {
if count == 0 {
break;
}
writer.write_all(&buffer[..count])?;
}
Ok(())
}
/// This is a helper function that is designed to read in a single
/// ben encoded line and convert it to a regular run-length encoded
/// assignment vector.
///
/// # Arguments
///
/// * `reader` - A reader containing the ben encoded assignment vectors
/// * `max_val_bits` - The maximum number of bits used to encode the value
/// * `max_len_bits` - The maximum number of bits used to encode the length
/// * `n_bytes` - The number of bytes used to encode the assignment vector
///
/// # Returns
///
/// A vector of tuples containing the run-length encoded assignment vector
pub fn decode_ben_line<R: Read>(
mut reader: R,
max_val_bits: u8,
max_len_bits: u8,
n_bytes: u32,
) -> io::Result<Vec<(u16, u16)>> {
let mut assign_bits: Vec<u8> = vec![0; n_bytes as usize];
reader.read_exact(&mut assign_bits)?;
// This should be right, but it doesn't need to be exact
let n_assignments: usize =
(n_bytes as f64 / ((max_val_bits + max_len_bits) as f64 / 8.0)) as usize;
let mut output_rle: Vec<(u16, u16)> = Vec::with_capacity(n_assignments);
let mut buffer: u32 = 0;
let mut n_bits_in_buff: u16 = 0;
let mut val = 0;
let mut val_set = false;
let mut len = 0;
let mut len_set = false;
for (_, &byte) in assign_bits.iter().enumerate() {
buffer = buffer | ((byte as u32).to_be() >> (n_bits_in_buff));
n_bits_in_buff += 8;
if n_bits_in_buff >= max_val_bits as u16 && !val_set {
val = (buffer >> (32 - max_val_bits)) as u16;
buffer = (buffer << max_val_bits) as u32;
n_bits_in_buff -= max_val_bits as u16;
val_set = true;
}
if n_bits_in_buff >= max_len_bits as u16 && val_set && !len_set {
len = (buffer >> (32 - max_len_bits)) as u16;
buffer = buffer << max_len_bits;
n_bits_in_buff -= max_len_bits as u16;
len_set = true;
}
if val_set && len_set {
// If max_val_bits and max_len_bits are <= 4
// then the rle can bet (0,0) pairs pushed to it
if len > 0 {
output_rle.push((val, len));
}
val_set = false;
len_set = false;
}
while n_bits_in_buff >= max_val_bits as u16 + max_len_bits as u16 {
if n_bits_in_buff >= max_val_bits as u16 && !val_set {
val = (buffer >> (32 - max_val_bits)) as u16;
buffer = (buffer << max_val_bits) as u32;
n_bits_in_buff -= max_val_bits as u16;
val_set = true;
}
if n_bits_in_buff >= max_len_bits as u16 && val_set && !len_set {
len = (buffer >> (32 - max_len_bits)) as u16;
buffer = buffer << max_len_bits;
n_bits_in_buff -= max_len_bits as u16;
len_set = true;
}
if val_set && len_set {
// If the max_val_bits and max_len_bits are <= 4
// then the rle can bet (0,0) pairs pushed to it
if len > 0 {
output_rle.push((val, len));
}
val_set = false;
len_set = false;
}
}
}
Ok(output_rle)
}
/// This function takes a reader containing a file encoded in the BEN format
/// and decodes it into a JSONL file.
///
/// The output JSONL file will have the formatting
///
/// ```json
/// {"assignment": [...], "sample": #}
/// ```
///
/// # Arguments
///
/// * `reader` - A reader containing the ben encoded assignment vectors
/// * `writer` - A writer that will contain the JSONL formatted assignment vectors
///
/// # Returns
///
/// An io::Result containing the result of the operation
///
/// # Errors
///
/// This function will return an error if the input reader contains invalid ben
/// data or if the the decode method encounters while trying to extract a single
/// assignment vector, that error is then propagated.
pub fn jsonl_decode_ben<R: Read, W: Write>(mut reader: R, mut writer: W) -> io::Result<()> {
let mut sample_number = 1;
let mut check_buffer = [0u8; 17];
reader.read_exact(&mut check_buffer)?;
if &check_buffer != b"STANDARD BEN FILE" {
return Err(Error::new(
io::ErrorKind::InvalidData,
"Invalid file format",
));
}
loop {
let mut tmp_buffer = [0u8];
let max_val_bits: u8 = match reader.read_exact(&mut tmp_buffer) {
Ok(()) => tmp_buffer[0],
Err(e) => {
if e.kind() == io::ErrorKind::UnexpectedEof {
logln!();
logln!("Done!");
return Ok(());
}
return Err(e);
}
};
log!("Decoding sample: {}\r", sample_number);
let max_len_bits = reader.read_u8()?;
let n_bytes = reader.read_u32::<BigEndian>()?;
let output_rle = decode_ben_line(&mut reader, max_val_bits, max_len_bits, n_bytes)?;
let line = json!({
"assignment": rle_to_vec(output_rle),
"sample": sample_number,
})
.to_string()
+ "\n";
writer.write_all(line.as_bytes())?;
sample_number += 1;
}
}
/// This function takes a reader containing a file encoded in the XBEN format
/// and decodes it into a JSONL file.
///
/// The output JSONL file will have the formatting
///
/// ```json
/// {"assignment": [...], "sample": #}
/// ```
///
/// # Arguments
///
/// * `reader` - A reader containing the xben encoded assignment vectors
/// * `writer` - A writer that will contain the JSONL formatted assignment vectors
///
/// # Returns
///
/// An io::Result containing the result of the operation
///
/// # Errors
///
/// This function will return an error if the input reader contains invalid xben
/// data or if the the decode method encounters while trying to extract a single
/// assignment vector, that error is then propagated.
pub fn jsonl_decode_xben<R: BufRead, W: Write>(reader: R, mut writer: W) -> io::Result<()> {
let mut decoder = xz2::read::XzDecoder::new(reader);
let mut first_buffer = [0u8; 17];
match decoder.read(&mut first_buffer) {
Ok(_) => {
if &first_buffer[..17] != b"STANDARD BEN FILE" {
return Err(Error::new(
io::ErrorKind::InvalidData,
"Invalid file format",
));
}
}
Err(e) => {
return Err(e);
}
}
let mut buffer = [0u8; 1048576]; // 1MB buffer
let mut overflow: Vec<u8> = Vec::new();
let mut line_count: usize = 0;
while let Ok(count) = decoder.read(&mut buffer) {
if count == 0 {
break;
}
overflow.extend(&buffer[..count]);
let mut last_valid_assignment = 0;
// It is technically faster to read backwards from the last
// multiple of 4 smaller than the length of the overflow buffer
// but this provides only a minute speedup in almost all cases (maybe a
// few seconds). Reading form the front is both safer from a
// maintenance perspective and allows for a better progress indicator
for i in (3..overflow.len()).step_by(4) {
if overflow[i - 3..=i] == [0, 0, 0, 0] {
last_valid_assignment = i + 1;
line_count += 1;
log!("Decoding sample: {}\r", line_count);
}
}
if last_valid_assignment == 0 {
continue;
}
let mut new_vec: Vec<u8> = b"STANDARD BEN FILE".to_vec();
new_vec.extend(&overflow[0..last_valid_assignment]);
jsonl_decode_ben32(&new_vec[..], &mut writer)?;
overflow = overflow[last_valid_assignment..].to_vec();
}
logln!();
logln!("Done!");
Ok(())
}
#[cfg(test)]
mod tests {
include!("tests/decode_tests.rs");
}