1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
//! Implementation of the number schema

use crate::{ByteOrder, Decoder, Encoder, Error, IntegerSchema, RawIntegerSchema, Result};
use byteorder::{ReadBytesExt, WriteBytesExt, BE, LE};
use serde::de::{Deserializer, Error as DeError};
use serde::Deserialize;
use serde_json::Value;
use std::convert::TryFrom;
use std::io;

/// Raw version of a number schema. May hold invalid invariants.
#[derive(Debug, Clone, Deserialize)]
#[serde(rename_all = "lowercase")]
struct RawNumber {
    #[serde(flatten, default)]
    raw_int: RawIntegerSchema,
    scale: Option<f64>,
    offset: Option<f64>,
}

/// The number schema describes a numeric value.
#[derive(Debug, Clone)]
pub enum NumberSchema {
    Integer {
        integer: IntegerSchema,
        scale: f64,
        offset: f64,
    },
    Float {
        byteorder: ByteOrder,
    },
    Double {
        byteorder: ByteOrder,
    },
}

const DEFAULT_LENGTH: usize = 4;
const DEFAULT_SCALE: f64 = 1_f64;
const DEFAULT_OFFSET: f64 = 0_f64;

impl NumberSchema {
    /// Default length is 8 bytes like a double-precision floating-point number.
    pub fn default_length() -> usize {
        DEFAULT_LENGTH
    }
    /// Default scale is neutral, i.e. `1.0`.
    pub fn default_scale() -> f64 {
        DEFAULT_SCALE
    }
    /// Default offset is neutral, i.e. `0.0`.
    pub fn default_offset() -> f64 {
        DEFAULT_OFFSET
    }
    pub fn new_integer(integer: IntegerSchema, scale: f64, offset: f64) -> Self {
        NumberSchema::Integer {
            integer,
            scale,
            offset,
        }
    }
    pub fn new_raw(length: usize, byteorder: ByteOrder) -> Result<Self> {
        match length {
            4 => Ok(NumberSchema::Float { byteorder }),
            8 => Ok(NumberSchema::Double { byteorder }),
            _ => Err(Error::InvalidFloatingLength { requested: length }),
        }
    }
    /// Apply scale and offset to the value.
    pub fn to_binary_value(&self, value: f64) -> i64 {
        match self {
            NumberSchema::Integer { scale, offset, .. } => ((value - *offset) / *scale) as _,
            _ => value as _,
        }
    }
    /// Apply scale and offset to the value.
    pub fn from_binary_value(&self, value: f64) -> f64 {
        match self {
            NumberSchema::Integer { scale, offset, .. } => value * *scale + *offset,
            _ => value,
        }
    }
    pub fn length(&self) -> usize {
        match self {
            NumberSchema::Integer { integer, .. } => integer.length(),
            NumberSchema::Float { .. } => 4,
            NumberSchema::Double { .. } => 8,
        }
    }
}

impl TryFrom<RawNumber> for NumberSchema {
    type Error = Error;

    fn try_from(value: RawNumber) -> Result<Self, Self::Error> {
        if value.scale.is_some() || value.offset.is_some() {
            let integer = IntegerSchema::try_from(value.raw_int)?;
            Ok(NumberSchema::Integer {
                integer,
                scale: value.scale.unwrap_or(DEFAULT_SCALE),
                offset: value.offset.unwrap_or(DEFAULT_OFFSET),
            })
        } else {
            match value.raw_int.length {
                4 => Ok(NumberSchema::Float {
                    byteorder: value.raw_int.byteorder,
                }),
                8 => Ok(NumberSchema::Double {
                    byteorder: value.raw_int.byteorder,
                }),
                _ => Err(Error::InvalidFloatingLength {
                    requested: value.raw_int.length,
                }),
            }
        }
    }
}

impl<'de> Deserialize<'de> for NumberSchema {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        let raw = RawNumber::deserialize(deserializer)?;
        NumberSchema::try_from(raw).map_err(D::Error::custom)
    }
}

impl Encoder for NumberSchema {
    fn encode<W>(&self, target: &mut W, value: &Value) -> Result<usize>
    where
        W: io::Write + WriteBytesExt,
    {
        let value = value.as_f64().ok_or_else(|| Error::InvalidValue {
            value: value.to_string(),
            type_: "number",
        })?;
        let length = match self {
            NumberSchema::Integer { integer, .. } => {
                let value = self.to_binary_value(value).into();
                integer.encode(target, &value)?
            }
            NumberSchema::Float { byteorder } => {
                let value = value as f32;
                match byteorder {
                    ByteOrder::LittleEndian => target.write_f32::<LE>(value)?,
                    ByteOrder::BigEndian => target.write_f32::<BE>(value)?,
                }
                4
            }
            NumberSchema::Double { byteorder } => {
                let value = value;
                match byteorder {
                    ByteOrder::LittleEndian => target.write_f64::<LE>(value)?,
                    ByteOrder::BigEndian => target.write_f64::<BE>(value)?,
                }
                8
            }
        };

        Ok(length)
    }
}

impl Decoder for NumberSchema {
    fn decode<R>(&self, target: &mut R) -> Result<Value>
    where
        R: io::Read + ReadBytesExt,
    {
        let value = match self {
            NumberSchema::Integer { integer, .. } => {
                let int = integer
                    .decode(target)?
                    .as_f64()
                    .expect("always works on integer schemata");
                self.from_binary_value(int).into()
            }
            NumberSchema::Float { byteorder } => match byteorder {
                ByteOrder::LittleEndian => target.read_f32::<LE>()?.into(),
                ByteOrder::BigEndian => target.read_f32::<BE>()?.into(),
            },
            NumberSchema::Double { byteorder } => match byteorder {
                ByteOrder::LittleEndian => target.read_f64::<LE>()?.into(),
                ByteOrder::BigEndian => target.read_f64::<BE>()?.into(),
            },
        };

        Ok(value)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use anyhow::Result;
    use serde_json::{from_value, json};

    /// Enough for this tests.
    fn eq_floaf(f1: f64, f2: f64) -> bool {
        (f1 - f2).abs() < 0.000_001
    }

    #[test]
    fn encode() -> Result<()> {
        let schema = json!({
            "scale": 0.01,
            "offset": 10,
            "byteorder": "littleendian",
            "length": 2
        });
        let number2int: NumberSchema = from_value(schema)?;
        let schema = json!({});
        let number2float: NumberSchema = from_value(schema)?;
        let schema = json!({
            "length": 8,
            "byteorder": "littleendian"
        });
        let number2double: NumberSchema = from_value(schema)?;
        let schema = json!({"length": 3});
        assert!(from_value::<NumberSchema>(schema).is_err());

        let value = 22.5;
        let json: Value = value.into();
        let value_as_bin = 1250_f64;
        assert!(eq_floaf(
            value_as_bin,
            number2int.to_binary_value(value) as f64
        ));
        let value_int_le = (value_as_bin as i16).to_le_bytes();
        let value_float_be = (value as f32).to_be_bytes();
        let value_double_le = value.to_le_bytes();
        let expected: Vec<u8> = value_int_le
            .iter()
            .chain(value_float_be.iter())
            .chain(value_double_le.iter())
            .copied()
            .collect();

        let mut buffer: Vec<u8> = vec![];
        assert_eq!(2, number2int.encode(&mut buffer, &json)?);
        assert_eq!(2, buffer.len());
        assert_eq!(4, number2float.encode(&mut buffer, &json)?);
        assert_eq!(2 + 4, buffer.len());
        assert_eq!(8, number2double.encode(&mut buffer, &json)?);
        assert_eq!(2 + 4 + 8, buffer.len());

        assert_eq!(buffer, expected);

        Ok(())
    }

    /// This example is the battery voltage from Ruuvi's RAWv2 protocol.
    #[test]
    fn bitfield() -> Result<()> {
        let schema = json!({
            "offset": 1.6,
            "scale": 0.001,
            "length": 2,
            "bits": 11,
            "bitoffset": 5
        });
        let voltage = from_value::<NumberSchema>(schema)?;
        let value1 = 1.6;
        let json1: Value = value1.into();
        let value2 = 3.0;
        let json2: Value = value2.into();
        let mut buffer = [0; 2];

        assert_eq!(2, voltage.encode(&mut buffer.as_mut(), &json1)?);
        let res = u16::from_be_bytes(buffer);
        assert_eq!(0, res);

        assert_eq!(2, voltage.encode(&mut buffer.as_mut(), &json2)?);
        let res = u16::from_be_bytes(buffer);
        let diff = 1400 - ((res >> 5) as i16);
        assert!(diff < 3 && diff > -3);

        Ok(())
    }

    #[test]
    fn bitfield2() -> Result<()> {
        let schema = json!({
            "type": "number",
            "offset": -40,
            "scale": 2,
            "length": 2,
            "bits": 5,
            "bitoffset": 0,
            "position": 50,
            "unit": "dBm",
            "description": "Transmission power in 1m distance."
        });
        let schema = from_value::<NumberSchema>(schema)?;
        
        println!("schema:\n{:#?}", schema);

        Ok(())
    }

    #[test]
    fn bitfield3() -> Result<()> {
        let schema = json!({
            "type": "number",
            "offset": 1.6,
            "scale": 0.001,
            "length": 2,
            "bits": 11,
            "bitoffset": 5,
            "position": 50,
            "unit": "volts",
            "description": "Voltage of the battery powering the RuuviTag."
        });
        let schema = from_value::<NumberSchema>(schema)?;
        
        println!("schema:\n{:#?}", schema);

        Ok(())
    }
}