1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
//! This [`bevy`] plugin makes it easy to build high-precision worlds that exceed the size of the
//! observable universe, with no added dependencies, while remaining largely compatible with the
//! rest of the Bevy ecosystem.
//!
//! ### Problem
//!
//! Objects far from the origin suffer from reduced precision, causing rendered meshes to jitter and
//! jiggle, and transformation calculations to encounter catastrophic cancellation.
//!
//! As the camera moves farther from the origin, the scale of floats needed to describe the position
//! of meshes and the camera get larger, which in turn means there is less precision available.
//! Consequently, when the matrix math is done to compute the position of objects in view space,
//! mesh vertices will be displaced due to this lost precision.
//!
//! ### Solution
//!
//! While using the [`FloatingOriginPlugin`], entities are placed into a [`GridCell`] in a large
//! fixed precision grid. Inside a `GridCell`, an entity's `Transform` is relative to the center of
//! that grid cell. If an entity moves into a neighboring cell, its transform will be recomputed
//! relative to the center of that new cell. This prevents `Transforms` from ever becoming larger
//! than a single grid cell, and thus prevents floating point precision artifacts.
//!
//! The same thing happens to the entity marked with the [`FloatingOrigin`] component. The only
//! difference is that the `GridCell` of the floating origin is used when computing the
//! `GlobalTransform` of all other entities. To an outside observer, as the floating origin camera
//! moves through space and reaches the limits of its `GridCell`, it would appear to teleport to the
//! opposite side of the cell, similar to the spaceship in the game *Asteroids*.
//!
//! The `GlobalTransform` of all entities is computed relative to the floating origin's grid cell.
//! Because of this, entities very far from the origin will have very large, imprecise positions.
//! However, this is always relative to the camera (floating origin), so these artifacts will always
//! be too far away to be seen, no matter where the camera moves. Because this only affects the
//! `GlobalTransform` and not the `Transform`, this also means that entities will never permanently
//! lose precision just because they were far from the origin at some point.
//!
//! # Getting Started
//!
//! All that's needed to start using this plugin:
//! 1. Disable Bevy's transform plugin: `DefaultPlugins.build().disable::<TransformPlugin>()`
//! 2. Add the [`FloatingOriginPlugin`] to your `App`
//! 3. Add the [`GridCell`] component to all spatial entities
//! 4. Add the [`FloatingOrigin`] component to the active camera
//!
//! Take a look at [`FloatingOriginSettings`] resource for some useful helper methods.
//!
//! # Moving Entities
//!
//! For the most part, you can update the position of entities normally while using this plugin, and
//! it will automatically handle the tricky bits. However, there is one big caveat:
//!
//! **Avoid setting position absolutely, instead prefer applying a relative delta**
//!
//! Instead of:
//!
//! ```ignore
//! transform.translation = a_huge_imprecise_position;
//! ```
//!
//! do:
//!
//! ```ignore
//! let delta = new_pos - old_pos;
//! transform.translation += delta;
//! ```
//!
//! ## Absolute Position
//!
//! If you are updating the position of an entity with absolute positions, and the position exceeds
//! the bounds of the entity's grid cell, the floating origin plugin will recenter that entity into
//! its new cell. Every time you update that entity, you will be fighting with the plugin as it
//! constantly recenters your entity. This can especially cause problems with camera controllers
//! which may not expect the large discontinuity in position as an entity moves between cells.
//!
//! The other reason to avoid this is you will likely run into precision issues! This plugin exists
//! because single precision is limited, and the larger the position coordinates get, the less
//! precision you have.
//!
//! However, if you have something that must not accumulate error, like the orbit of a planet, you
//! can instead do the orbital calculation (position as a function of time) to compute the absolute
//! position of the planet with high precision, then directly compute the [`GridCell`] and
//! [`Transform`] of that entity using [`FloatingOriginSettings::translation_to_grid`]. If the star
//! this planet is orbiting around is also moving through space, note that you can add/subtract grid
//! cells. This means you can do each calculation in the reference frame of the moving body, and sum
//! up the computed translations and grid cell offsets to get a more precise result.
#![allow(clippy::type_complexity)]
#![deny(missing_docs)]
use bevy::{math::DVec3, prelude::*, transform::TransformSystem};
use propagation::propagate_transforms;
use std::marker::PhantomData;
pub mod camera;
pub mod grid_cell;
pub mod precision;
pub mod propagation;
pub use grid_cell::GridCell;
#[cfg(feature = "debug")]
pub mod debug;
use precision::*;
/// Add this plugin to your [`App`] for floating origin functionality.
pub struct FloatingOriginPlugin<P: GridPrecision> {
/// The edge length of a single cell.
pub grid_edge_length: f32,
/// How far past the extents of a cell an entity must travel before a grid recentering occurs.
/// This prevents entities from rapidly switching between cells when moving along a boundary.
pub switching_threshold: f32,
phantom: PhantomData<P>,
}
impl<P: GridPrecision> Default for FloatingOriginPlugin<P> {
fn default() -> Self {
Self::new(10_000f32, 100f32)
}
}
impl<P: GridPrecision> FloatingOriginPlugin<P> {
/// Construct a new plugin with the following settings.
pub fn new(grid_edge_length: f32, switching_threshold: f32) -> Self {
FloatingOriginPlugin {
grid_edge_length,
switching_threshold,
phantom: PhantomData::default(),
}
}
}
impl<P: GridPrecision> Plugin for FloatingOriginPlugin<P> {
fn build(&self, app: &mut App) {
app.insert_resource(FloatingOriginSettings::new(
self.grid_edge_length,
self.switching_threshold,
))
.register_type::<Transform>()
.register_type::<GlobalTransform>()
.register_type::<GridCell<P>>()
.add_plugin(ValidParentCheckPlugin::<GlobalTransform>::default())
.configure_set(TransformSystem::TransformPropagate.in_base_set(CoreSet::PostUpdate))
.edit_schedule(CoreSchedule::Startup, |schedule| {
schedule.configure_set(
TransformSystem::TransformPropagate.in_base_set(StartupSet::PostStartup),
);
})
// add transform systems to startup so the first update is "correct"
.add_startup_systems(
(
recenter_transform_on_grid::<P>,
sync_simple_transforms::<P>
.after(recenter_transform_on_grid::<P>)
.before(propagate_transforms::<P>),
update_global_from_grid::<P>
.after(recenter_transform_on_grid::<P>)
.before(propagate_transforms::<P>),
propagate_transforms::<P>,
)
.in_set(TransformSystem::TransformPropagate),
)
.add_systems(
(
recenter_transform_on_grid::<P>,
sync_simple_transforms::<P>
.after(recenter_transform_on_grid::<P>)
.before(propagate_transforms::<P>),
update_global_from_grid::<P>
.after(recenter_transform_on_grid::<P>)
.before(propagate_transforms::<P>),
propagate_transforms::<P>,
)
.in_set(TransformSystem::TransformPropagate),
);
}
}
/// Configuration settings for the floating origin plugin.
#[derive(Reflect, Clone, Resource)]
pub struct FloatingOriginSettings {
grid_edge_length: f32,
maximum_distance_from_origin: f32,
}
impl FloatingOriginSettings {
fn new(grid_edge_length: f32, switching_threshold: f32) -> Self {
Self {
grid_edge_length,
maximum_distance_from_origin: grid_edge_length / 2.0 + switching_threshold,
}
}
/// Get the plugin's `grid_edge_length`.
pub fn grid_edge_length(&self) -> f32 {
self.grid_edge_length
}
/// Get the plugin's `maximum_distance_from_origin`.
pub fn maximum_distance_from_origin(&self) -> f32 {
self.maximum_distance_from_origin
}
/// Compute the double precision position of an entity's [`Transform`] with respect to the given
/// [`GridCell`].
pub fn grid_position_double<P: GridPrecision>(
&self,
pos: &GridCell<P>,
transform: &Transform,
) -> DVec3 {
DVec3 {
x: pos.x.as_f64() * self.grid_edge_length as f64 + transform.translation.x as f64,
y: pos.y.as_f64() * self.grid_edge_length as f64 + transform.translation.y as f64,
z: pos.z.as_f64() * self.grid_edge_length as f64 + transform.translation.z as f64,
}
}
/// Compute the single precision position of an entity's [`Transform`] with respect to the given
/// [`GridCell`].
pub fn grid_position<P: GridPrecision>(
&self,
pos: &GridCell<P>,
transform: &Transform,
) -> Vec3 {
Vec3 {
x: pos.x.as_f64() as f32 * self.grid_edge_length + transform.translation.x,
y: pos.y.as_f64() as f32 * self.grid_edge_length + transform.translation.y,
z: pos.z.as_f64() as f32 * self.grid_edge_length + transform.translation.z,
}
}
/// Convert a large translation into a small translation relative to a grid cell.
pub fn translation_to_grid<P: GridPrecision>(
&self,
input: impl Into<DVec3>,
) -> (GridCell<P>, Vec3) {
let l = self.grid_edge_length as f64;
let input = input.into();
let DVec3 { x, y, z } = input;
if input.abs().max_element() < self.maximum_distance_from_origin as f64 {
return (GridCell::default(), input.as_vec3());
}
let x_r = (x / l).round();
let y_r = (y / l).round();
let z_r = (z / l).round();
let t_x = x - x_r * l;
let t_y = y - y_r * l;
let t_z = z - z_r * l;
(
GridCell {
x: P::from_f32(x_r as f32),
y: P::from_f32(y_r as f32),
z: P::from_f32(z_r as f32),
},
Vec3::new(t_x as f32, t_y as f32, t_z as f32),
)
}
/// Convert a large translation into a small translation relative to a grid cell.
pub fn imprecise_translation_to_grid<P: GridPrecision>(
&self,
input: Vec3,
) -> (GridCell<P>, Vec3) {
self.translation_to_grid(input.as_dvec3())
}
}
/// Minimal bundle needed to position an entity in floating origin space.
///
/// This is the floating origin equivalent of the [`SpatialBundle`].
#[derive(Bundle, Default)]
pub struct FloatingSpatialBundle<P: GridPrecision> {
/// The visibility of the entity.
pub visibility: Visibility,
/// The computed visibility of the entity.
pub computed: ComputedVisibility,
/// The transform of the entity.
pub transform: Transform,
/// The global transform of the entity.
pub global_transform: GlobalTransform,
/// The grid position of the entity
pub grid_position: GridCell<P>,
}
/// Marks the entity to use as the floating origin. All other entities will be positioned relative
/// to this entity's [`GridCell`].
#[derive(Component, Reflect)]
pub struct FloatingOrigin;
/// If an entity's transform becomes larger than the specified limit, it is relocated to the nearest
/// grid cell to reduce the size of the transform.
pub fn recenter_transform_on_grid<P: GridPrecision>(
settings: Res<FloatingOriginSettings>,
mut query: Query<(&mut GridCell<P>, &mut Transform), (Changed<Transform>, Without<Parent>)>,
) {
query
.par_iter_mut()
.for_each_mut(|(mut grid_pos, mut transform)| {
if transform.as_ref().translation.abs().max_element()
> settings.maximum_distance_from_origin
{
let (grid_cell_delta, translation) =
settings.imprecise_translation_to_grid(transform.as_ref().translation);
*grid_pos += grid_cell_delta;
transform.translation = translation;
}
});
}
/// Compute the `GlobalTransform` relative to the floating origin's cell.
pub fn update_global_from_grid<P: GridPrecision>(
settings: Res<FloatingOriginSettings>,
origin: Query<Ref<GridCell<P>>, With<FloatingOrigin>>,
mut entities: ParamSet<(
Query<
(&Transform, &mut GlobalTransform, &GridCell<P>),
Or<(Changed<GridCell<P>>, Changed<Transform>)>,
>,
Query<(&Transform, &mut GlobalTransform, &GridCell<P>)>,
)>,
) {
let origin_cell = origin.single();
if origin_cell.is_changed() {
let mut all_entities = entities.p1();
all_entities
.par_iter_mut()
.for_each_mut(|(local, global, entity_cell)| {
update_global_from_cell_local(&settings, entity_cell, &origin_cell, local, global);
});
} else {
let mut moved_cell_entities = entities.p0();
moved_cell_entities
.par_iter_mut()
.for_each_mut(|(local, global, entity_cell)| {
update_global_from_cell_local(&settings, entity_cell, &origin_cell, local, global);
});
}
}
fn update_global_from_cell_local<P: GridPrecision>(
settings: &FloatingOriginSettings,
entity_cell: &GridCell<P>,
origin_cell: &GridCell<P>,
local: &Transform,
mut global: Mut<GlobalTransform>,
) {
let grid_cell_delta = entity_cell - origin_cell;
*global = local
.with_translation(settings.grid_position(&grid_cell_delta, local))
.into();
}
/// Update [`GlobalTransform`] component of entities that aren't in the hierarchy
///
/// Third party plugins should ensure that this is used in concert with [`propagate_transforms`].
pub fn sync_simple_transforms<P: GridPrecision>(
mut query: Query<
(&Transform, &mut GlobalTransform),
(
Changed<Transform>,
Without<Parent>,
Without<Children>,
Without<GridCell<P>>,
),
>,
) {
query
.par_iter_mut()
.for_each_mut(|(transform, mut global_transform)| {
*global_transform = GlobalTransform::from(*transform);
});
}