1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/*!
Provides IO utility functions for read bytes of different length and converting to corresponding structs.
*/
use ipnet::{IpNet, Ipv4Net, Ipv6Net};
use std::io::{Cursor, Seek, SeekFrom};
use std::{
    io,
    net::{Ipv4Addr, Ipv6Addr},
};

use bgp_models::prelude::*;
use byteorder::{ReadBytesExt, BE};
use log::debug;
use num_traits::FromPrimitive;
use std::net::IpAddr;

use crate::error::ParserError;

// Allow reading IPs from Reads
pub trait ReadUtils: io::Read {
    fn read_8b(&mut self) -> io::Result<u8> {
        self.read_u8()
    }

    fn read_16b(&mut self) -> io::Result<u16> {
        self.read_u16::<BE>()
    }

    fn read_32b(&mut self) -> io::Result<u32> {
        self.read_u32::<BE>()
    }

    fn read_64b(&mut self) -> io::Result<u64> {
        self.read_u64::<BE>()
    }

    fn read_128b(&mut self) -> io::Result<u128> {
        self.read_u128::<BE>()
    }

    fn read_address(&mut self, afi: &Afi) -> io::Result<IpAddr> {
        match afi {
            Afi::Ipv4 => match self.read_ipv4_address() {
                Ok(ip) => Ok(IpAddr::V4(ip)),
                _ => Err(io::Error::new(
                    io::ErrorKind::Other,
                    "Cannot parse IPv4 address".to_string(),
                )),
            },
            Afi::Ipv6 => match self.read_ipv6_address() {
                Ok(ip) => Ok(IpAddr::V6(ip)),
                _ => Err(io::Error::new(
                    io::ErrorKind::Other,
                    "Cannot parse IPv6 address".to_string(),
                )),
            },
        }
    }

    fn read_ipv4_address(&mut self) -> Result<Ipv4Addr, ParserError> {
        let addr = self.read_32b()?;
        Ok(Ipv4Addr::from(addr))
    }

    fn read_ipv6_address(&mut self) -> Result<Ipv6Addr, ParserError> {
        let buf = self.read_u128::<BE>()?;
        Ok(Ipv6Addr::from(buf))
    }

    fn read_ipv4_prefix(&mut self) -> Result<Ipv4Net, ParserError> {
        let addr = self.read_ipv4_address()?;
        let mask = self.read_8b()?;
        match Ipv4Net::new(addr, mask) {
            Ok(n) => Ok(n),
            Err(_) => Err(io::Error::new(io::ErrorKind::Other, "Invalid prefix mask").into()),
        }
    }

    fn read_ipv6_prefix(&mut self) -> Result<Ipv6Net, ParserError> {
        let addr = self.read_ipv6_address()?;
        let mask = self.read_8b()?;
        match Ipv6Net::new(addr, mask) {
            Ok(n) => Ok(n),
            Err(_) => Err(io::Error::new(io::ErrorKind::Other, "Invalid prefix mask").into()),
        }
    }

    fn read_asn(&mut self, as_length: &AsnLength) -> Result<Asn, ParserError> {
        match as_length {
            AsnLength::Bits16 => {
                let asn = self.read_16b()? as u32;
                Ok(Asn {
                    asn,
                    len: AsnLength::Bits16,
                })
            }
            AsnLength::Bits32 => {
                let asn = self.read_32b()?;
                Ok(Asn {
                    asn,
                    len: AsnLength::Bits32,
                })
            }
        }
    }

    fn read_asns(&mut self, as_length: &AsnLength, count: usize) -> Result<Vec<Asn>, ParserError> {
        let mut path = [0; 255];
        Ok(match as_length {
            AsnLength::Bits16 => {
                for i in 0..count {
                    path[i] = self.read_u16::<BE>()? as u32;
                }
                path[..count]
                    .iter()
                    .map(|asn| Asn {
                        asn: *asn,
                        len: *as_length,
                    })
                    .collect::<Vec<Asn>>()
            }
            AsnLength::Bits32 => {
                for i in 0..count {
                    path[i] = self.read_32b()?;
                }
                path[..count]
                    .iter()
                    .map(|asn| Asn {
                        asn: *asn,
                        len: *as_length,
                    })
                    .collect::<Vec<Asn>>()
            }
        })
    }

    fn read_afi(&mut self) -> Result<Afi, ParserError> {
        let afi = self.read_u16::<BE>()?;
        match Afi::from_i16(afi as i16) {
            Some(afi) => Ok(afi),
            None => Err(crate::error::ParserError::Unsupported(format!(
                "Unknown AFI type: {}",
                afi
            ))),
        }
    }

    fn read_safi(&mut self) -> Result<Safi, ParserError> {
        let safi = self.read_8b()?;
        match Safi::from_u8(safi) {
            Some(safi) => Ok(safi),
            None => Err(crate::error::ParserError::Unsupported(format!(
                "Unknown SAFI type: {}",
                safi
            ))),
        }
    }

    /// Read announced/withdrawn prefix.
    ///
    /// The length in bits is 1 byte, and then based on the IP version it reads different number of bytes.
    /// If the `add_path` is true, it will also first read a 4-byte path id first; otherwise, a path-id of 0
    /// is automatically set.
    fn read_nlri_prefix(
        &mut self,
        afi: &Afi,
        add_path: bool,
    ) -> Result<NetworkPrefix, ParserError> {
        let path_id = if add_path { self.read_32b()? } else { 0 };

        // Length in bits
        let bit_len = self.read_8b()?;

        // Convert to bytes
        let byte_len: usize = (bit_len as usize + 7) / 8;
        let addr: IpAddr = match afi {
            Afi::Ipv4 => {
                // 4 bytes -- u32
                if byte_len > 4 {
                    return Err(ParserError::ParseError(format!(
                        "Invalid byte length for IPv4 prefix. byte_len: {}, bit_len: {}",
                        byte_len, bit_len
                    )));
                }
                let mut buff = [0; 4];
                for i in 0..byte_len {
                    buff[i] = self.read_8b()?
                }
                IpAddr::V4(Ipv4Addr::from(buff))
            }
            Afi::Ipv6 => {
                // 16 bytes
                if byte_len > 16 {
                    return Err(ParserError::ParseError(format!(
                        "Invalid byte length for IPv6 prefix. byte_len: {}, bit_len: {}",
                        byte_len, bit_len
                    )));
                }
                let mut buff = [0; 16];
                for i in 0..byte_len {
                    buff[i] = self.read_8b()?
                }
                IpAddr::V6(Ipv6Addr::from(buff))
            }
        };
        let prefix = match IpNet::new(addr, bit_len) {
            Ok(p) => p,
            Err(_) => {
                return Err(ParserError::ParseError(format!(
                    "Invalid network prefix length: {}",
                    bit_len
                )))
            }
        };

        Ok(NetworkPrefix::new(prefix, path_id))
    }

    fn read_n_bytes(&mut self, n_bytes: usize) -> Result<Vec<u8>, ParserError> {
        // TODO: fix the checking
        // if self.total - self.pos < n_bytes {
        //     return Err(ParserError::IoNotEnoughBytes())
        // }
        let mut bytes = vec![];
        for _ in 0..n_bytes {
            bytes.push(self.read_8b()?);
        }
        Ok(bytes)
    }

    fn read_n_bytes_to_string(&mut self, n_bytes: usize) -> Result<String, ParserError> {
        let buffer = self.read_n_bytes(n_bytes)?;
        Ok(buffer
            .into_iter()
            .map(|x: u8| x as char)
            .collect::<String>())
    }
}

pub fn parse_nlri_list(
    input: &mut Cursor<&[u8]>,
    add_path: bool,
    afi: &Afi,
    total_bytes: u64,
) -> Result<Vec<NetworkPrefix>, ParserError> {
    let pos_end = input.position() + total_bytes;

    let mut is_add_path = add_path;
    let mut prefixes = vec![];

    let mut retry = false;
    let mut guessed = false;

    let pos_save = input.position();

    while input.position() < pos_end {
        if !is_add_path && input.get_ref()[input.position() as usize] == 0 {
            // it's likely that this is a add-path wrongfully wrapped in non-add-path msg
            debug!("not add-path but with NLRI size to be 0, likely add-path msg in wrong msg type, treat as add-path now");
            is_add_path = true;
            guessed = true;
        }
        let prefix = match input.read_nlri_prefix(afi, is_add_path) {
            Ok(p) => p,
            Err(e) => {
                if guessed {
                    retry = true;
                    break;
                } else {
                    return Err(e);
                }
            }
        };
        prefixes.push(prefix);
    }

    if retry {
        prefixes.clear();
        // try again without attempt to guess add-path
        input.seek(SeekFrom::Start(pos_save))?;
        while input.position() < pos_end {
            let prefix = input.read_nlri_prefix(afi, add_path)?;
            prefixes.push(prefix);
        }
    }

    Ok(prefixes)
}

// All types that implement Read can now read prefixes
impl<R: io::Read> ReadUtils for R {}

/// A CRC32 implementation that converts a string to a hex string.
///
/// CRC32 is a checksum algorithm that is used to verify the integrity of data. It is short in
/// length and sufficient for generating unique file names based on remote URLs.
pub fn crc32(input: &str) -> String {
    let input_bytes = input.as_bytes();
    let mut table = [0u32; 256];
    let polynomial = 0xedb88320u32;

    for i in 0..256 {
        let mut crc = i as u32;
        for _ in 0..8 {
            if crc & 1 == 1 {
                crc = (crc >> 1) ^ polynomial;
            } else {
                crc >>= 1;
            }
        }
        table[i as usize] = crc;
    }

    let mut crc = !0u32;
    for byte in input_bytes.iter() {
        let index = ((crc ^ (*byte as u32)) & 0xff) as usize;
        crc = (crc >> 8) ^ table[index];
    }

    format!("{:08x}", !crc)
}