bgpkit_parser/parser/iters.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*!
Provides parser iterator implementation.
*/
use crate::error::ParserError;
use crate::models::*;
use crate::parser::BgpkitParser;
use crate::{Elementor, Filterable};
use log::{error, warn};
use std::io::Read;
/// Use [ElemIterator] as the default iterator to return [BgpElem]s instead of [MrtRecord]s.
impl<R: Read> IntoIterator for BgpkitParser<R> {
type Item = BgpElem;
type IntoIter = ElemIterator<R>;
fn into_iter(self) -> Self::IntoIter {
ElemIterator::new(self)
}
}
impl<R> BgpkitParser<R> {
pub fn into_record_iter(self) -> RecordIterator<R> {
RecordIterator::new(self)
}
pub fn into_elem_iter(self) -> ElemIterator<R> {
ElemIterator::new(self)
}
}
/*********
MrtRecord Iterator
**********/
pub struct RecordIterator<R> {
pub parser: BgpkitParser<R>,
pub count: u64,
elementor: Elementor,
}
impl<R> RecordIterator<R> {
fn new(parser: BgpkitParser<R>) -> Self {
RecordIterator {
parser,
count: 0,
elementor: Elementor::new(),
}
}
}
impl<R: Read> Iterator for RecordIterator<R> {
type Item = MrtRecord;
fn next(&mut self) -> Option<MrtRecord> {
self.count += 1;
loop {
return match self.parser.next_record() {
Ok(v) => {
// if None, the reaches EoF.
let filters = &self.parser.filters;
if filters.is_empty() {
Some(v)
} else {
if let MrtMessage::TableDumpV2Message(TableDumpV2Message::PeerIndexTable(
_,
)) = &v.message
{
let _ = self.elementor.record_to_elems(v.clone());
return Some(v);
}
let elems = self.elementor.record_to_elems(v.clone());
if elems.iter().any(|e| e.match_filters(&self.parser.filters)) {
Some(v)
} else {
continue;
}
}
}
Err(e) => {
match e.error {
ParserError::TruncatedMsg(err_str) | ParserError::Unsupported(err_str) => {
if self.parser.options.show_warnings {
warn!("parser warn: {}", err_str);
}
if let Some(bytes) = e.bytes {
std::fs::write("mrt_core_dump", bytes)
.expect("Unable to write to mrt_core_dump");
}
continue;
}
ParserError::ParseError(err_str) => {
error!("parser error: {}", err_str);
if self.parser.core_dump {
if let Some(bytes) = e.bytes {
std::fs::write("mrt_core_dump", bytes)
.expect("Unable to write to mrt_core_dump");
}
None
} else {
continue;
}
}
ParserError::EofExpected => {
// normal end of file
None
}
ParserError::IoError(err) | ParserError::EofError(err) => {
// when reaching IO error, stop iterating
error!("{:?}", err);
if self.parser.core_dump {
if let Some(bytes) = e.bytes {
std::fs::write("mrt_core_dump", bytes)
.expect("Unable to write to mrt_core_dump");
}
}
None
}
#[cfg(feature = "oneio")]
ParserError::OneIoError(_) => None,
ParserError::FilterError(_) => {
// this should not happen at this stage
None
}
}
}
};
}
}
}
/*********
BgpElem Iterator
**********/
pub struct ElemIterator<R> {
cache_elems: Vec<BgpElem>,
record_iter: RecordIterator<R>,
elementor: Elementor,
count: u64,
}
impl<R> ElemIterator<R> {
fn new(parser: BgpkitParser<R>) -> Self {
ElemIterator {
record_iter: RecordIterator::new(parser),
count: 0,
cache_elems: vec![],
elementor: Elementor::new(),
}
}
}
impl<R: Read> Iterator for ElemIterator<R> {
type Item = BgpElem;
fn next(&mut self) -> Option<BgpElem> {
self.count += 1;
loop {
if self.cache_elems.is_empty() {
// refill cache elems
loop {
match self.record_iter.next() {
None => {
// no more records
return None;
}
Some(r) => {
let mut elems = self.elementor.record_to_elems(r);
if elems.is_empty() {
// somehow this record does not contain any elems, continue to parse next record
continue;
} else {
elems.reverse();
self.cache_elems = elems;
break;
}
}
}
}
// when reaching here, the `self.cache_elems` has been refilled with some more elems
}
// popping cached elems. note that the original elems order is preseved by reversing the
// vector before putting it on to cache_elems.
let elem = self.cache_elems.pop();
match elem {
None => return None,
Some(e) => match e.match_filters(&self.record_iter.parser.filters) {
true => return Some(e),
false => continue,
},
}
}
}
}