1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#![cfg_attr(feature = "dev", allow(unstable_features))]
#![cfg_attr(feature = "dev", feature(plugin))]
#![cfg_attr(feature = "dev", plugin(clippy))]
#![deny(missing_docs)]
//! Defines 3-space and implements the boolean GJK (BGJK) algorithm
//! for intersection testing.
use std::ops::{Neg, Sub};

/// Vector for use in the `bgjk` function
///
/// Uses cartesian spatial dimensions in the order
/// x, y, z.
#[derive(Clone, Copy, Debug, Default)]
pub struct Vec3(pub f32, pub f32, pub f32);

impl Eq for Vec3 {}

impl PartialEq for Vec3 {
	fn eq(&self, other: &Vec3) -> bool {
		self.0 == other.0 && self.1 == other.1 && self.2 == other.2
	}
}

impl Sub for Vec3 {
	type Output = Vec3;
	fn sub(self, right: Vec3) -> Self::Output {
		Vec3(self.0 - right.0, self.1 - right.1, self.2 - right.2)
	}
}

impl Vec3 {
	fn dot(&self, right: Vec3) -> f32 {
		self.0 * right.0 + self.1 * right.1 + self.2 * right.2
	}

	fn ones() -> Vec3 {
		Vec3(1.0, 1.0, 1.0)
	}
}

impl Neg for Vec3 {
	type Output = Vec3;
	fn neg(self) -> Self::Output {
		Vec3(-self.0, -self.1, -self.2)
	}
}

/// The BGJK algorithm
///
/// The Boolean-GJK algorithm gives us the answer to the question:
/// "do these convex hulls intersect?"
/// This algorithm takes two hulls. The ordering of the points is not
/// important. All points are assumed to be on the surface of the hull.
/// Having interior points should not affect the qualitative result of
/// the algorithm, but may cause slight (very minor) degradation in
/// performance. The algorithm is O(n+m), where n and m are the amount
/// of points in hull1 and hull2 respectively.
pub fn bgjk(hull1: &[Vec3], hull2: &[Vec3]) -> bool {
	let mut sp = Vec3::ones();
	let mut dp = Vec3::default();
	let (mut ap, mut bp, mut cp);

	cp = support(hull1, hull2, sp);
	sp = -cp;
	bp = support(hull1, hull2, sp);
	if bp.dot(sp) < 0.0 {
		return false;
	}
	sp = dcross3(cp - bp, -bp);
	let mut w = 2;

	loop {
		ap = support(hull1, hull2, sp);
		if ap.dot(sp) < 0.0 {
			return false;
		} else if simplex(&mut ap, &mut bp, &mut cp, &mut dp, &mut sp, &mut w) {
			return true;
		}
	}
}

// Todo clean up signature, this has to be fixed, sending 6 ptrs...
fn simplex(ap: &mut Vec3,
           bp: &mut Vec3,
           cp: &mut Vec3,
           dp: &mut Vec3,
           sp: &mut Vec3,
           w: &mut i32)
           -> bool {
	let ao = -*ap;
	let mut ab = *bp - *ap;
	let mut ac = *cp - *ap;
	let mut abc = cross(ab, ac);
	match *w {
		2 => {
			let ab_abc = cross(ab, abc);
			if ab_abc.dot(ao) > 0.0 {
				*cp = *bp;
				*bp = *ap;
				*sp = dcross3(ab, ao);
			} else {
				let abc_ac = cross(abc, ac);
				if abc_ac.dot(ao) > 0.0 {
					*bp = *ap;
					*sp = dcross3(ac, ao);
				} else {
					if abc.dot(ao) > 0.0 {
						*dp = *cp;
						*cp = *bp;
						*bp = *ap;
						*sp = abc;
					} else {
						*dp = *bp;
						*bp = *ap;
						*sp = -abc;
					}
					*w = 3;
				}
			}
			false
		}
		3 => {
			macro_rules! check_tetrahedron {
				() => { check_tetra(Tetra(ap, bp, cp, dp), sp, w, ao, ab, ac, abc); };
			};
			if abc.dot(ao) > 0.0 {
				check_tetrahedron![];;
				false
			} else {
				let ad = *dp - *ap;
				let acd = cross(ac, ad);
				if acd.dot(ao) > 0.0 {
					*bp = *cp;
					*cp = *dp;
					ab = ac;
					ac = ad;
					abc = acd;
					check_tetrahedron![];;
					false
				} else {
					let adb = cross(ad, ab);
					if adb.dot(ao) > 0.0 {
						*cp = *bp;
						*bp = *dp;
						ac = ab;
						ab = ad;
						abc = adb;
						check_tetrahedron![];;
						false
					} else {
						true
					}
				}
			}
		}
		_ => false,
	}
}

struct Tetra<'a>(&'a mut Vec3, &'a mut Vec3, &'a mut Vec3, &'a mut Vec3);

fn check_tetra(te: Tetra, sp: &mut Vec3, w: &mut i32, ao: Vec3, ab: Vec3, ac: Vec3, abc: Vec3) {
	let ab_abc = cross(ab, abc);
	if ab_abc.dot(ao) > 0.0 {
		*te.2 = *te.1;
		*te.1 = *te.0;
		*sp = dcross3(ab, ao);
		*w = 2;
	} else {
		let acp = cross(abc, ac);
		if acp.dot(ao) > 0.0 {
			*te.1 = *te.0;
			*sp = dcross3(ac, ao);
			*w = 2;
		} else {
			*te.3 = *te.2;
			*te.2 = *te.1;
			*te.1 = *te.0;
			*sp = abc;
			*w = 3;
		}
	}
}

fn cross(a: Vec3, b: Vec3) -> Vec3 {
	Vec3(a.1 * b.2 - a.2 * b.1,
	     a.2 * b.0 - a.0 * b.2,
	     a.0 * b.1 - a.1 * b.0)
}

fn cross3(a: Vec3, b: Vec3, c: Vec3) -> Vec3 {
	cross(cross(a, b), c)
}

fn dcross3(a: Vec3, b: Vec3) -> Vec3 {
	cross3(a, b, a)
}

fn farthest(vertices: &[Vec3], direction: Vec3) -> Vec3 {
	let mut max: Option<f32> = None;
	let mut max_vertex = Vec3::default();
	for vertex in vertices {
		let current = vertex.dot(direction);
		if let Some(value) = max {
			if current > value {
				max = Some(current);
				max_vertex = *vertex;
			}
		} else {
			max = Some(current);
			max_vertex = *vertex;
		}
	}
	max_vertex
}

fn support(vertices_a: &[Vec3], vertices_b: &[Vec3], direction: Vec3) -> Vec3 {
	farthest(vertices_a, direction) - farthest(vertices_b, -direction)
}


#[cfg(test)]
mod tests {

	use std::f32;
	use std::f32::consts::PI;
	use super::{Vec3, bgjk};
	static EPS: f32 = f32::EPSILON;

	macro_rules! pts {
		($($e:expr),*) => {
			[$(
				Vec3($e.0, $e.1, $e.2)
			),*]
		};
	}

	#[test]
	fn square1() {
		let shape1 = pts![(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 1.0, 0.0)];
		let shape2 = pts![(-2.0, 0.0, 0.0), (-3.0, 0.0, 0.0), (-2.0, 1.0, 0.0), (-3.0, 1.0, 0.0)];
		assert_eq![bgjk(&shape1, &shape2), false];
	}

	#[test]
	fn exact_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 1.0, 0.0)];
		let shape2 = pts![(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 1.0, 0.0)];
		assert_eq![bgjk(&shape1, &shape2), true];
	}

	#[test]
	fn line_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)];
		let shape2 = pts![(0.5, 1.0, 0.0), (0.5, -1.0, 0.0)];
		assert_eq![bgjk(&shape1, &shape2), true];
	}

	#[test]
	fn line_non_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)];
		let shape2 = pts![(1.5, 1.0, 0.0), (1.5, -1.0, 0.0)];
		assert_eq![bgjk(&shape1, &shape2), false];
	}

	#[test]
	fn small_line_point_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0), (0.01, 0.0, 0.0)];
		let shape2 = pts![(0.005, 0.0, 0.1)];
		assert_eq![bgjk(&shape1, &shape2), false];
	}

	#[test]
	fn line_point_non_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)];
		let shape2 = pts![(0.5, 0.0, 0.1)];
		assert_eq![bgjk(&shape1, &shape2), false];
	}

	#[test]
	fn point_overlap() {
		let shape1 = pts![(0.5, 1.0, 0.0)];
		let shape2 = pts![(0.5, 1.0, 0.0)];
		assert_eq![bgjk(&shape1, &shape2), true];
	}

	#[test]
	fn point_no_overlap() {
		let shape1 = pts![(0.5, 1.0, 0.0)];
		let shape2 = pts![(1.0, 1.0, 0.0)];
		assert_eq![bgjk(&shape1, &shape2), false];
	}

	#[test]
	fn empty_no_overlap() {
		// An empty set defaults to a single point in origo in the set
		let shape1: [Vec3; 0] = pts![];
		let shape2 = pts![(1.0, 1.0, 1.0)];
		assert_eq![bgjk(&shape1, &shape2), false];
	}

	#[test]
	fn side_by_side_squares() {
		let shape1 = pts![(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 1.0, 0.0)];
		let shape2 = pts![(1.0, 0.0, 0.0), (2.0, 0.0, 0.0), (1.0, 1.0, 0.0), (2.0, 1.0, 0.0)];
		assert_eq![bgjk(&shape1, &shape2), true];
	}

	#[test]
	fn side_by_side_squares_offset() {
		let shape1 = pts![(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 1.0, 0.0)];
		let shape2 =
			pts![(1.0 + EPS, 0.0, 0.0), (2.0, 0.0, 0.0), (1.0 + EPS, 1.0, 0.0), (2.0, 1.0, 0.0)];
		assert_eq![bgjk(&shape1, &shape2), false];
	}

	#[test]
	fn single_point_square_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 1.0, 0.0)];
		let shape2 = pts![(1.0, 1.0, 0.0), (2.0, 1.0, 0.0), (1.0, 2.0, 0.0), (2.0, 2.0, 0.0)];
		assert_eq![bgjk(&shape1, &shape2), true];
	}

	#[test]
	fn single_point_shape_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0),
		                 (1.0, 0.0, 0.0),
		                 (0.0, 1.0, 0.0),
		                 (1.0, 1.0, 0.0),
		                 (0.0, 0.0, 1.0),
		                 (1.0, 0.0, 1.0),
		                 (0.0, 1.0, 1.0),
		                 (1.0, 1.0, 1.0)];
		let shape2 = pts![(1.0, 1.0, 1.0),
		                 (2.0, 1.0, 1.0),
		                 (1.0, 2.0, 1.0),
		                 (2.0, 2.0, 1.0),
		                 (1.0, 1.0, 2.0),
		                 (2.0, 1.0, 2.0),
		                 (1.0, 2.0, 2.0),
		                 (2.0, 2.0, 2.0)];
		assert_eq![bgjk(&shape1, &shape2), true];
	}

	#[test]
	fn single_point_shape_non_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0),
		                 (1.0, 0.0, 0.0),
		                 (0.0, 1.0, 0.0),
		                 (1.0, 1.0, 0.0),
		                 (0.0, 0.0, 1.0),
		                 (1.0, 0.0, 1.0),
		                 (0.0, 1.0, 1.0),
		                 (1.0, 1.0, 1.0)];
		let shape2 = pts![(1.0, 1.0, 1.0 + EPS),
		                 (2.0, 1.0, 1.0 + EPS),
		                 (1.0, 2.0, 1.0 + EPS),
		                 (2.0, 2.0, 1.0 + EPS),
		                 (1.0, 1.0, 2.0),
		                 (2.0, 1.0, 2.0),
		                 (1.0, 2.0, 2.0),
		                 (2.0, 2.0, 2.0)];
		assert_eq![bgjk(&shape1, &shape2), false];
	}

	#[test]
	fn single_line_shape_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0),
		                 (1.0, 0.0, 0.0),
		                 (0.0, 1.0, 0.0),
		                 (1.0, 1.0, 0.0),
		                 (0.0, 0.0, 1.0),
		                 (1.0, 0.0, 1.0),
		                 (0.0, 1.0, 1.0),
		                 (1.0, 1.0, 1.0)];
		let shape2 = pts![(1.0, 1.0, 0.0),
		                 (2.0, 1.0, 0.0),
		                 (1.0, 2.0, 0.0),
		                 (2.0, 2.0, 0.0),
		                 (1.0, 1.0, 1.0),
		                 (2.0, 1.0, 1.0),
		                 (1.0, 2.0, 1.0),
		                 (2.0, 2.0, 1.0)];
		assert_eq![bgjk(&shape1, &shape2), true];
	}

	#[test]
	fn shape_projective_non_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0),
		                 (1.0, 0.0, 0.0),
		                 (0.0, 1.0, 0.0),
		                 (1.0, 1.0, 0.0),
		                 (1.0, 0.0, 1.0),
		                 (2.0, 0.0, 1.0),
		                 (1.0, 1.0, 1.0),
		                 (2.0, 1.0, 1.0)];
		let shape2 = pts![(1.1, 1.0, 0.0),
		                 (2.1, 1.0, 0.0),
		                 (1.1, 2.0, 0.0),
		                 (2.1, 2.0, 0.0),
		                 (2.1, 1.0, 1.0),
		                 (3.1, 1.0, 1.0),
		                 (2.1, 2.0, 1.0),
		                 (3.1, 2.0, 1.0)];
		assert_eq![bgjk(&shape1, &shape2), false];
	}

	#[test]
	fn shape_projective_overlap() {
		let shape1 = pts![(0.0, 0.0, 0.0),
		                 (1.0, 0.0, 0.0),
		                 (0.0, 1.0, 0.0),
		                 (1.0, 1.0, 0.0),
		                 (1.0, 0.0, 1.0),
		                 (2.0, 0.0, 1.0),
		                 (1.0, 1.0, 1.0),
		                 (2.0, 1.0, 1.0)];
		let shape2 = pts![(1.1, 1.0, 0.0),
		                 (2.1, 1.0, 0.0),
		                 (1.1, 2.0, 0.0),
		                 (2.1, 2.0, 0.0),
		                 (2.0, 1.0, 1.0),
		                 (3.1, 1.0, 1.0),
		                 (2.0, 2.0, 1.0),
		                 (3.1, 2.0, 1.0)];
		assert_eq![bgjk(&shape1, &shape2), true];
	}

	#[test]
	fn shape_non_overlap() {
		let (mut shape1, mut shape2) = (vec![], vec![]);
		let units = 100;
		shape1.reserve(units);
		shape2.reserve(units);
		for i in 0..units {
			let radian = i as f32 / units as f32 * 2.0 * PI;
			shape1.push(Vec3(radian.cos(), radian.sin(), 0.0));
			shape2.push(Vec3(radian.cos(), radian.sin(), EPS));
		}
		assert_eq![bgjk(&shape1, &shape2), false];
	}

	#[test]
	fn shape_overlap() {
		let (mut shape1, mut shape2) = (vec![], vec![]);
		let units = 100;
		shape1.reserve(units);
		shape2.reserve(units);
		for i in 0..units {
			let radian = i as f32 / units as f32 * 2.0 * PI;
			shape1.push(Vec3(radian.cos(), radian.sin(), 0.0));
			shape2.push(Vec3(radian.cos(), radian.sin(), 0.0));
		}
		assert_eq![bgjk(&shape1, &shape2), true];
	}

	#[test]
	fn shape_section() {
		let (mut shape1, mut shape2) = (vec![], vec![]);
		let units = 100;
		shape1.reserve(units);
		shape2.reserve(units);
		for i in 0..units {
			let radian = i as f32 / units as f32 * 2.0 * PI;
			shape1.push(Vec3(radian.cos(), radian.sin(), 0.0));
			shape2.push(Vec3(radian.cos() + 0.5, radian.sin(), 0.0));
		}
		assert_eq![bgjk(&shape1, &shape2), true];
	}

	#[test]
	fn shape_away() {
		let (mut shape1, mut shape2) = (vec![], vec![]);
		let units = 100;
		shape1.reserve(units);
		shape2.reserve(units);
		for i in 0..units {
			let radian = i as f32 / units as f32 * 2.0 * PI;
			shape1.push(Vec3(radian.cos(), radian.sin(), 0.0));
			shape2.push(Vec3(radian.cos() + 2.0 + 2.0 * EPS, radian.sin(), 0.0));
		}
		assert_eq![bgjk(&shape1, &shape2), false];
	}

}