1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
#![deny(
    warnings,
    missing_copy_implementations,
    trivial_casts,
    trivial_numeric_casts,
    unsafe_code,
    unstable_features,
    unused_import_braces,
    unused_qualifications,
    missing_docs
)]

//! Tweening animation plugin for the Bevy game engine
//!
//! 🍃 Bevy Tweening provides interpolation-based animation between ("tweening")
//! two values, for Bevy components and assets. Each field of a component or
//! asset can be animated via a collection or predefined easing functions,
//! or providing a custom animation curve. Custom components and assets are also
//! supported.
//!
//! # Example
//!
//! Add the tweening plugin to your app:
//!
//! ```no_run
//! use bevy::prelude::*;
//! use bevy_tweening::*;
//!
//! App::default()
//!     .add_plugins(DefaultPlugins)
//!     .add_plugins(TweeningPlugin)
//!     .run();
//! ```
//!
//! Animate the position ([`Transform::translation`]) of an [`Entity`]:
//!
//! ```
//! # use bevy::prelude::*;
//! # use bevy_tweening::{lens::*, *};
//! # use std::time::Duration;
//! # fn system(mut commands: Commands) {
//! # let size = 16.;
//! // Create a single animation (tween) to move an entity.
//! let tween = Tween::new(
//!     // Use a quadratic easing on both endpoints.
//!     EaseFunction::QuadraticInOut,
//!     // Animation time.
//!     Duration::from_secs(1),
//!     // The lens gives access to the Transform component of the Entity,
//!     // for the Animator to animate it. It also contains the start and
//!     // end values respectively associated with the progress ratios 0. and 1.
//!     TransformPositionLens {
//!         start: Vec3::ZERO,
//!         end: Vec3::new(1., 2., -4.),
//!     },
//! );
//!
//! commands.spawn((
//!     // Spawn an entity to animate the position of.
//!     TransformBundle::default(),
//!     // Add an Animator component to control and execute the animation.
//!     Animator::new(tween),
//! ));
//! # }
//! ```
//!
//! Note that this example leverages the fact [`TweeningPlugin`] automatically
//! adds the necessary system to animate [`Transform`] components. However, for
//! most other components and assets, you need to manually add those systems to
//! your `App`.
//!
//! # System setup
//!
//! Adding the [`TweeningPlugin`] to your app provides the basic setup for using
//! 🍃 Bevy Tweening. However, additional setup is required depending on the
//! components and assets you want to animate:
//!
//! - To ensure a component `C` is animated, the
//!   [`component_animator_system::<C>`] system must run each frame, in addition
//!   of adding an [`Animator::<C>`] component to the same Entity as `C`.
//!
//! - To ensure an asset `A` is animated, the [`asset_animator_system::<A>`]
//!   system must run each frame, in addition of adding an [`AssetAnimator<A>`]
//!   component to any Entity. Animating assets also requires the `bevy_asset`
//!   feature (enabled by default).
//!
//! By default, 🍃 Bevy Tweening adopts a minimalist approach, and the
//! [`TweeningPlugin`] will only add systems to animate components and assets
//! for which a [`Lens`] is provided by 🍃 Bevy Tweening itself. This means that
//! any other Bevy component or asset (either built-in from Bevy itself, or
//! custom) requires manually scheduling the appropriate system.
//!
//! | Component or Asset | Animation system added by `TweeningPlugin`? |
//! |---|---|
//! | [`Transform`]          | Yes                           |
//! | [`Sprite`]             | Only if `bevy_sprite` feature |
//! | [`ColorMaterial`]      | Only if `bevy_sprite` feature |
//! | [`Style`]              | Only if `bevy_ui` feature     |
//! | [`Text`]               | Only if `bevy_text` feature   |
//! | All other components   | No                            |
//!
//! To add a system for a component `C`, use:
//!
//! ```
//! # use bevy::prelude::*;
//! # use bevy_tweening::*;
//! # let mut app = App::default();
//! # #[derive(Component)] struct C;
//! app.add_systems(Update,
//!     component_animator_system::<C>
//!         .in_set(AnimationSystem::AnimationUpdate));
//! ```
//!
//! Similarly for an asset `A`, use the `asset_animator_system`. This is only
//! available with the `bevy_asset` feature.
//!
//! # Tweenables
//!
//! 🍃 Bevy Tweening supports several types of _tweenables_, building blocks
//! that can be combined to form complex animations. A tweenable is a type
//! implementing the [`Tweenable`] trait.
//!
//! - [`Tween`] - A simple tween (easing) animation between two values.
//! - [`Sequence`] - A series of tweenables executing in series, one after the
//!   other.
//! - [`Tracks`] - A collection of tweenables executing in parallel.
//! - [`Delay`] - A time delay. This doesn't animate anything.
//!
//! ## Chaining animations
//!
//! Most tweenables can be chained with the `then()` operator to produce a
//! [`Sequence`] tweenable:
//!
//! ```
//! # use bevy::prelude::*;
//! # use bevy_tweening::{lens::*, *};
//! # use std::time::Duration;
//! let tween1 = Tween::new(
//!     // [...]
//! #    EaseFunction::BounceOut,
//! #    Duration::from_secs(2),
//! #    TransformScaleLens {
//! #        start: Vec3::ZERO,
//! #        end: Vec3::ONE,
//! #    },
//! );
//! let tween2 = Tween::new(
//!     // [...]
//! #    EaseFunction::QuadraticInOut,
//! #    Duration::from_secs(1),
//! #    TransformPositionLens {
//! #        start: Vec3::ZERO,
//! #        end: Vec3::new(3.5, 0., 0.),
//! #    },
//! );
//! // Produce a Sequence executing first 'tween1' then 'tween2'
//! let seq = tween1.then(tween2);
//! ```
//!
//! # Animators and lenses
//!
//! Bevy components and assets are animated with tweening _animator_ components,
//! which take a tweenable and apply it to another component on the same
//! [`Entity`]. Those animators determine that other component and its fields to
//! animate using a _lens_.
//!
//! ## Components animation
//!
//! Components are animated with the [`Animator`] component, which is generic
//! over the type of component it animates. This is a restriction imposed by
//! Bevy, to access the animated component as a mutable reference via a
//! [`Query`] and comply with the ECS rules.
//!
//! The [`Animator`] itself is not generic over the subset of fields of the
//! components it animates. This limits the proliferation of generic types when
//! animating e.g. both the position and rotation of an entity.
//!
//! ## Assets animation
//!
//! Assets are animated in a similar way to component, via the [`AssetAnimator`]
//! component. This requires the `bevy_asset` feature (enabled by default).
//!
//! Because assets are typically shared, and the animation applies to the asset
//! itself, all users of the asset see the animation. For example, animating the
//! color of a [`ColorMaterial`] will change the color of all the
//! 2D meshes using that material.
//!
//! ## Lenses
//!
//! Both [`Animator`] and [`AssetAnimator`] access the field(s) to animate via a
//! lens, a type that implements the [`Lens`] trait.
//!
//! Several predefined lenses are provided in the [`lens`] module for the most
//! commonly animated fields, like the components of a [`Transform`]. A custom
//! lens can also be created by implementing the trait, allowing to animate
//! virtually any field of any Bevy component or asset.
//!
//! [`Transform::translation`]: https://docs.rs/bevy/0.12.0/bevy/transform/components/struct.Transform.html#structfield.translation
//! [`Entity`]: https://docs.rs/bevy/0.12.0/bevy/ecs/entity/struct.Entity.html
//! [`Query`]: https://docs.rs/bevy/0.12.0/bevy/ecs/system/struct.Query.html
//! [`ColorMaterial`]: https://docs.rs/bevy/0.12.0/bevy/sprite/struct.ColorMaterial.html
//! [`Sprite`]: https://docs.rs/bevy/0.12.0/bevy/sprite/struct.Sprite.html
//! [`Style`]: https://docs.rs/bevy/0.12.0/bevy/ui/struct.Style.html
//! [`Text`]: https://docs.rs/bevy/0.12.0/bevy/text/struct.Text.html
//! [`Transform`]: https://docs.rs/bevy/0.12.0/bevy/transform/components/struct.Transform.html

use std::time::Duration;

use bevy::prelude::*;
use interpolation::Ease as IEase;
pub use interpolation::{EaseFunction, Lerp};

pub use lens::Lens;
#[cfg(feature = "bevy_asset")]
pub use plugin::asset_animator_system;
pub use plugin::{component_animator_system, AnimationSystem, TweeningPlugin};
pub use tweenable::{
    BoxedTweenable, Delay, Sequence, Targetable, TotalDuration, Tracks, Tween, TweenCompleted,
    TweenState, Tweenable,
};

pub mod lens;
mod plugin;
mod tweenable;

#[cfg(test)]
mod test_utils;

/// How many times to repeat a tween animation. See also: [`RepeatStrategy`].
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum RepeatCount {
    /// Run the animation N times.
    Finite(u32),
    /// Run the animation for some amount of time.
    For(Duration),
    /// Loop the animation indefinitely.
    Infinite,
}

impl Default for RepeatCount {
    fn default() -> Self {
        Self::Finite(1)
    }
}

impl From<u32> for RepeatCount {
    fn from(value: u32) -> Self {
        Self::Finite(value)
    }
}

impl From<Duration> for RepeatCount {
    fn from(value: Duration) -> Self {
        Self::For(value)
    }
}

/// What to do when a tween animation needs to be repeated. See also
/// [`RepeatCount`].
///
/// Only applicable when [`RepeatCount`] is greater than the animation duration.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum RepeatStrategy {
    /// Reset the animation back to its starting position.
    Repeat,
    /// Follow a ping-pong pattern, changing the direction each time an endpoint
    /// is reached.
    ///
    /// A complete cycle start -> end -> start always counts as 2 loop
    /// iterations for the various operations where looping matters. That
    /// is, a 1 second animation will take 2 seconds to end up back where it
    /// started.
    MirroredRepeat,
}

impl Default for RepeatStrategy {
    fn default() -> Self {
        Self::Repeat
    }
}

/// Playback state of an animator.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum AnimatorState {
    /// The animation is playing. This is the default state.
    Playing,
    /// The animation is paused in its current state.
    Paused,
}

impl Default for AnimatorState {
    fn default() -> Self {
        Self::Playing
    }
}

impl std::ops::Not for AnimatorState {
    type Output = Self;

    fn not(self) -> Self::Output {
        match self {
            Self::Paused => Self::Playing,
            Self::Playing => Self::Paused,
        }
    }
}

/// Describe how eased value should be computed.
#[derive(Clone, Copy)]
pub enum EaseMethod {
    /// Follow `EaseFunction`.
    EaseFunction(EaseFunction),
    /// Linear interpolation, with no function.
    Linear,
    /// Discrete interpolation, eased value will jump from start to end when
    /// stepping over the discrete limit.
    Discrete(f32),
    /// Use a custom function to interpolate the value.
    CustomFunction(fn(f32) -> f32),
}

impl EaseMethod {
    #[must_use]
    fn sample(self, x: f32) -> f32 {
        match self {
            Self::EaseFunction(function) => x.calc(function),
            Self::Linear => x,
            Self::Discrete(limit) => {
                if x > limit {
                    1.
                } else {
                    0.
                }
            }
            Self::CustomFunction(function) => function(x),
        }
    }
}

impl Default for EaseMethod {
    fn default() -> Self {
        Self::Linear
    }
}

impl From<EaseFunction> for EaseMethod {
    fn from(ease_function: EaseFunction) -> Self {
        Self::EaseFunction(ease_function)
    }
}

/// Direction a tweening animation is playing.
///
/// When playing a tweenable forward, the progress values `0` and `1` are
/// respectively mapped to the start and end bounds of the lens(es) being used.
/// Conversely, when playing backward, this mapping is reversed, such that a
/// progress value of `0` corresponds to the state of the target at the end
/// bound of the lens, while a progress value of `1` corresponds to the state of
/// that target at the start bound of the lens, effectively making the animation
/// play backward.
///
/// For all but [`RepeatStrategy::MirroredRepeat`] this is always
/// [`TweeningDirection::Forward`], unless manually configured with
/// [`Tween::set_direction()`] in which case the value is constant equal to the
/// value set. When using [`RepeatStrategy::MirroredRepeat`], this is either
/// forward (from start to end; ping) or backward (from end to start; pong),
/// depending on the current iteration of the loop.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum TweeningDirection {
    /// Animation playing from start to end.
    Forward,
    /// Animation playing from end to start, in reverse.
    Backward,
}

impl TweeningDirection {
    /// Is the direction equal to [`TweeningDirection::Forward`]?
    #[must_use]
    pub fn is_forward(&self) -> bool {
        *self == Self::Forward
    }

    /// Is the direction equal to [`TweeningDirection::Backward`]?
    #[must_use]
    pub fn is_backward(&self) -> bool {
        *self == Self::Backward
    }
}

impl Default for TweeningDirection {
    fn default() -> Self {
        Self::Forward
    }
}

impl std::ops::Not for TweeningDirection {
    type Output = Self;

    fn not(self) -> Self::Output {
        match self {
            Self::Forward => Self::Backward,
            Self::Backward => Self::Forward,
        }
    }
}

macro_rules! animator_impl {
    () => {
        /// Set the initial playback state of the animator.
        #[must_use]
        pub fn with_state(mut self, state: AnimatorState) -> Self {
            self.state = state;
            self
        }

        /// Set the initial speed of the animator. See [`Animator::set_speed`] for
        /// details.
        #[must_use]
        pub fn with_speed(mut self, speed: f32) -> Self {
            self.speed = speed;
            self
        }

        /// Set the animation speed. Defaults to 1.
        ///
        /// A speed of 2 means the animation will run twice as fast while a speed of 0.1
        /// will result in a 10x slowed animation.
        pub fn set_speed(&mut self, speed: f32) {
            self.speed = speed;
        }

        /// Get the animation speed.
        ///
        /// See [`set_speed()`] for a definition of what the animation speed is.
        ///
        /// [`set_speed()`]: Animator::speed
        pub fn speed(&self) -> f32 {
            self.speed
        }

        /// Set the top-level tweenable item this animator controls.
        pub fn set_tweenable(&mut self, tween: impl Tweenable<T> + 'static) {
            self.tweenable = Box::new(tween);
        }

        /// Get the top-level tweenable this animator is currently controlling.
        #[must_use]
        pub fn tweenable(&self) -> &dyn Tweenable<T> {
            self.tweenable.as_ref()
        }

        /// Get the top-level mutable tweenable this animator is currently controlling.
        #[must_use]
        pub fn tweenable_mut(&mut self) -> &mut dyn Tweenable<T> {
            self.tweenable.as_mut()
        }

        /// Stop animation playback and rewind the animation.
        ///
        /// This changes the animator state to [`AnimatorState::Paused`] and rewind its
        /// tweenable.
        pub fn stop(&mut self) {
            self.state = AnimatorState::Paused;
            self.tweenable_mut().rewind();
        }
    };
}

/// Component to control the animation of another component.
///
/// The animated component is the component located on the same entity as the
/// [`Animator<T>`] itself.
#[derive(Component)]
pub struct Animator<T: Component> {
    /// Control if this animation is played or not.
    pub state: AnimatorState,
    tweenable: BoxedTweenable<T>,
    speed: f32,
}

impl<T: Component + std::fmt::Debug> std::fmt::Debug for Animator<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Animator")
            .field("state", &self.state)
            .finish()
    }
}

impl<T: Component> Animator<T> {
    /// Create a new animator component from a single tweenable.
    #[must_use]
    pub fn new(tween: impl Tweenable<T> + 'static) -> Self {
        Self {
            state: default(),
            tweenable: Box::new(tween),
            speed: 1.,
        }
    }

    animator_impl!();
}

/// Component to control the animation of an asset.
///
/// The animated asset is the asset referenced by a [`Handle<T>`] component
/// located on the same entity as the [`AssetAnimator<T>`] itself.
#[cfg(feature = "bevy_asset")]
#[derive(Component)]
pub struct AssetAnimator<T: Asset> {
    /// Control if this animation is played or not.
    pub state: AnimatorState,
    tweenable: BoxedTweenable<T>,
    speed: f32,
}

#[cfg(feature = "bevy_asset")]
impl<T: Asset + std::fmt::Debug> std::fmt::Debug for AssetAnimator<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("AssetAnimator")
            .field("state", &self.state)
            .finish()
    }
}

#[cfg(feature = "bevy_asset")]
impl<T: Asset> AssetAnimator<T> {
    /// Create a new asset animator component from a single tweenable.
    #[must_use]
    pub fn new(tween: impl Tweenable<T> + 'static) -> Self {
        Self {
            state: default(),
            tweenable: Box::new(tween),
            speed: 1.,
        }
    }

    animator_impl!();
}

/// Trait to interpolate between two values.
/// Needed for color.
#[allow(dead_code)]
trait ColorLerper {
    fn lerp(&self, target: &Self, ratio: f32) -> Self;
}

#[allow(dead_code)]
impl ColorLerper for Color {
    fn lerp(&self, target: &Color, ratio: f32) -> Color {
        let r = self.r().lerp(target.r(), ratio);
        let g = self.g().lerp(target.g(), ratio);
        let b = self.b().lerp(target.b(), ratio);
        let a = self.a().lerp(target.a(), ratio);
        Color::rgba(r, g, b, a)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_utils::*;

    struct DummyLens {
        start: f32,
        end: f32,
    }

    #[derive(Debug, Default, Component)]
    struct DummyComponent {
        value: f32,
    }

    #[cfg(feature = "bevy_asset")]
    #[derive(Asset, Debug, Default, Reflect)]
    struct DummyAsset {
        value: f32,
    }

    impl Lens<DummyComponent> for DummyLens {
        fn lerp(&mut self, target: &mut DummyComponent, ratio: f32) {
            target.value = self.start.lerp(self.end, ratio);
        }
    }

    #[test]
    fn dummy_lens_component() {
        let mut c = DummyComponent::default();
        let mut l = DummyLens { start: 0., end: 1. };
        for r in [0_f32, 0.01, 0.3, 0.5, 0.9, 0.999, 1.] {
            l.lerp(&mut c, r);
            assert_approx_eq!(c.value, r);
        }
    }

    #[cfg(feature = "bevy_asset")]
    impl Lens<DummyAsset> for DummyLens {
        fn lerp(&mut self, target: &mut DummyAsset, ratio: f32) {
            target.value = self.start.lerp(self.end, ratio);
        }
    }

    #[cfg(feature = "bevy_asset")]
    #[test]
    fn dummy_lens_asset() {
        let mut a = DummyAsset::default();
        let mut l = DummyLens { start: 0., end: 1. };
        for r in [0_f32, 0.01, 0.3, 0.5, 0.9, 0.999, 1.] {
            l.lerp(&mut a, r);
            assert_approx_eq!(a.value, r);
        }
    }

    #[test]
    fn repeat_count() {
        let count = RepeatCount::default();
        assert_eq!(count, RepeatCount::Finite(1));
    }

    #[test]
    fn repeat_strategy() {
        let strategy = RepeatStrategy::default();
        assert_eq!(strategy, RepeatStrategy::Repeat);
    }

    #[test]
    fn tweening_direction() {
        let tweening_direction = TweeningDirection::default();
        assert_eq!(tweening_direction, TweeningDirection::Forward);
    }

    #[test]
    fn animator_state() {
        let mut state = AnimatorState::default();
        assert_eq!(state, AnimatorState::Playing);
        state = !state;
        assert_eq!(state, AnimatorState::Paused);
        state = !state;
        assert_eq!(state, AnimatorState::Playing);
    }

    #[test]
    fn ease_method() {
        let ease = EaseMethod::default();
        assert!(matches!(ease, EaseMethod::Linear));

        let ease = EaseMethod::EaseFunction(EaseFunction::QuadraticIn);
        assert_eq!(0., ease.sample(0.));
        assert_eq!(0.25, ease.sample(0.5));
        assert_eq!(1., ease.sample(1.));

        let ease = EaseMethod::Linear;
        assert_eq!(0., ease.sample(0.));
        assert_eq!(0.5, ease.sample(0.5));
        assert_eq!(1., ease.sample(1.));

        let ease = EaseMethod::Discrete(0.3);
        assert_eq!(0., ease.sample(0.));
        assert_eq!(1., ease.sample(0.5));
        assert_eq!(1., ease.sample(1.));

        let ease = EaseMethod::CustomFunction(|f| 1. - f);
        assert_eq!(0., ease.sample(1.));
        assert_eq!(0.5, ease.sample(0.5));
        assert_eq!(1., ease.sample(0.));
    }

    #[test]
    fn animator_new() {
        let tween = Tween::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(1),
            DummyLens { start: 0., end: 1. },
        );
        let animator = Animator::<DummyComponent>::new(tween);
        assert_eq!(animator.state, AnimatorState::default());
        assert_eq!(animator.tweenable().progress(), 0.);
    }

    #[test]
    fn animator_with_state() {
        for state in [AnimatorState::Playing, AnimatorState::Paused] {
            let tween = Tween::<DummyComponent>::new(
                EaseFunction::QuadraticInOut,
                Duration::from_secs(1),
                DummyLens { start: 0., end: 1. },
            );
            let animator = Animator::new(tween).with_state(state);
            assert_eq!(animator.state, state);

            // impl Debug
            let debug_string = format!("{:?}", animator);
            assert_eq!(
                debug_string,
                format!("Animator {{ state: {:?} }}", animator.state)
            );
        }
    }

    #[test]
    fn animator_controls() {
        let tween = Tween::<DummyComponent>::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(1),
            DummyLens { start: 0., end: 1. },
        );
        let mut animator = Animator::new(tween);
        assert_eq!(animator.state, AnimatorState::Playing);
        assert_approx_eq!(animator.tweenable().progress(), 0.);

        animator.stop();
        assert_eq!(animator.state, AnimatorState::Paused);
        assert_approx_eq!(animator.tweenable().progress(), 0.);

        animator.tweenable_mut().set_progress(0.5);
        assert_eq!(animator.state, AnimatorState::Paused);
        assert_approx_eq!(animator.tweenable().progress(), 0.5);

        animator.tweenable_mut().rewind();
        assert_eq!(animator.state, AnimatorState::Paused);
        assert_approx_eq!(animator.tweenable().progress(), 0.);

        animator.tweenable_mut().set_progress(0.5);
        animator.state = AnimatorState::Playing;
        assert_eq!(animator.state, AnimatorState::Playing);
        assert_approx_eq!(animator.tweenable().progress(), 0.5);

        animator.tweenable_mut().rewind();
        assert_eq!(animator.state, AnimatorState::Playing);
        assert_approx_eq!(animator.tweenable().progress(), 0.);

        animator.stop();
        assert_eq!(animator.state, AnimatorState::Paused);
        assert_approx_eq!(animator.tweenable().progress(), 0.);
    }

    #[test]
    fn animator_speed() {
        let tween = Tween::<DummyComponent>::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(1),
            DummyLens { start: 0., end: 1. },
        );

        let mut animator = Animator::new(tween);
        assert_approx_eq!(animator.speed(), 1.); // default speed

        animator.set_speed(2.4);
        assert_approx_eq!(animator.speed(), 2.4);

        let tween = Tween::<DummyComponent>::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(1),
            DummyLens { start: 0., end: 1. },
        );

        let animator = Animator::new(tween).with_speed(3.5);
        assert_approx_eq!(animator.speed(), 3.5);
    }

    #[test]
    fn animator_set_tweenable() {
        let tween = Tween::<DummyComponent>::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(1),
            DummyLens { start: 0., end: 1. },
        );
        let mut animator = Animator::new(tween);

        let tween2 = Tween::<DummyComponent>::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(2),
            DummyLens { start: 0., end: 1. },
        );
        animator.set_tweenable(tween2);

        assert_eq!(animator.tweenable().duration(), Duration::from_secs(2));
    }

    #[cfg(feature = "bevy_asset")]
    #[test]
    fn asset_animator_new() {
        let tween = Tween::<DummyAsset>::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(1),
            DummyLens { start: 0., end: 1. },
        );
        let animator = AssetAnimator::new(tween);
        assert_eq!(animator.state, AnimatorState::default());
        let tween = animator;
        assert_eq!(tween.tweenable().progress(), 0.);
    }

    #[cfg(feature = "bevy_asset")]
    #[test]
    fn asset_animator_with_state() {
        for state in [AnimatorState::Playing, AnimatorState::Paused] {
            let tween = Tween::<DummyAsset>::new(
                EaseFunction::QuadraticInOut,
                Duration::from_secs(1),
                DummyLens { start: 0., end: 1. },
            );
            let animator = AssetAnimator::new(tween).with_state(state);
            assert_eq!(animator.state, state);

            // impl Debug
            let debug_string = format!("{:?}", animator);
            assert_eq!(
                debug_string,
                format!("AssetAnimator {{ state: {:?} }}", animator.state)
            );
        }
    }

    #[cfg(feature = "bevy_asset")]
    #[test]
    fn asset_animator_controls() {
        let tween: Tween<DummyAsset> = Tween::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(1),
            DummyLens { start: 0., end: 1. },
        );
        let mut animator = AssetAnimator::new(tween);
        assert_eq!(animator.state, AnimatorState::Playing);
        assert_approx_eq!(animator.tweenable().progress(), 0.);

        animator.stop();
        assert_eq!(animator.state, AnimatorState::Paused);
        assert_approx_eq!(animator.tweenable().progress(), 0.);

        animator.tweenable_mut().set_progress(0.5);
        assert_eq!(animator.state, AnimatorState::Paused);
        assert_approx_eq!(animator.tweenable().progress(), 0.5);

        animator.tweenable_mut().rewind();
        assert_eq!(animator.state, AnimatorState::Paused);
        assert_approx_eq!(animator.tweenable().progress(), 0.);

        animator.tweenable_mut().set_progress(0.5);
        animator.state = AnimatorState::Playing;
        assert_eq!(animator.state, AnimatorState::Playing);
        assert_approx_eq!(animator.tweenable().progress(), 0.5);

        animator.tweenable_mut().rewind();
        assert_eq!(animator.state, AnimatorState::Playing);
        assert_approx_eq!(animator.tweenable().progress(), 0.);

        animator.stop();
        assert_eq!(animator.state, AnimatorState::Paused);
        assert_approx_eq!(animator.tweenable().progress(), 0.);
    }

    #[cfg(feature = "bevy_asset")]
    #[test]
    fn asset_animator_speed() {
        let tween: Tween<DummyAsset> = Tween::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(1),
            DummyLens { start: 0., end: 1. },
        );

        let mut animator = AssetAnimator::new(tween);
        assert_approx_eq!(animator.speed(), 1.); // default speed

        animator.set_speed(2.4);
        assert_approx_eq!(animator.speed(), 2.4);

        let tween: Tween<DummyAsset> = Tween::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(1),
            DummyLens { start: 0., end: 1. },
        );

        let animator = AssetAnimator::new(tween).with_speed(3.5);
        assert_approx_eq!(animator.speed(), 3.5);
    }

    #[cfg(feature = "bevy_asset")]
    #[test]
    fn asset_animator_set_tweenable() {
        let tween: Tween<DummyAsset> = Tween::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(1),
            DummyLens { start: 0., end: 1. },
        );
        let mut animator = AssetAnimator::new(tween);

        let tween2 = Tween::new(
            EaseFunction::QuadraticInOut,
            Duration::from_secs(2),
            DummyLens { start: 0., end: 1. },
        );
        animator.set_tweenable(tween2);

        assert_eq!(animator.tweenable().duration(), Duration::from_secs(2));
    }
}